精英家教网 > 高中数学 > 题目详情
11.已知函数y=1-3x+a•9x在(-∞,1)上恒为正值,求实数a的取值范围.

分析 通过换元,把函数转化为二次函数f(t)=1-t+at2,利用二次函数的性质和图象,通过对a的分类讨论解决问题.

解答 解:令t=3x,t∈(0,3)
∴f(t)=1-t+at2
=at2-t+1
=a(t-$\frac{1}{2a}$)2+1-$\frac{1}{4a}$,
显然f(0)=1;
当a=0时,f(t)=-t+1显然不成立;
当a>0时,
若△<0,则1-4a<0,
∴a>$\frac{1}{4}$;
若△≥0,则:
$\frac{1}{2a}$>3,
f(3)>0,
解得知无解;
当a<0时,则,
f(3)>0,
解得知无解;
故a的范围为a>$\frac{1}{4}$.

点评 考察了换元的思想和二次函数性质,难点是对参数a的分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B’处,则B’点的坐标为(  )
A.(2,$2\sqrt{3}$)B.($\frac{3}{2}$,$2-\sqrt{3}$)C.(2,$4-2\sqrt{3}$)D.($\frac{3}{2}$,$4-2\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex(ax+b),曲线y=f(x)在(0,f(0))处的切线方程为y=4x+1.
(1)求a,b的值;
(2)求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知关于x的不等式$\frac{{x}^{2}+(a+1)x+2}{{x}^{2}+x+2}$<2对x∈R恒成立的条件是a∈(m,n),则m+n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足:a1=$\frac{2}{3}$,a2=2且3(an+1-2an+an-1)=2.
(1)令bn=an-an-1,求证:{bn}是等差数列,并求{an}的通项公式;
(2)为使$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$>$\frac{5}{2}$成立的最小的正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=ax-b的函数图象如图所示,其中a和b的取值范围是0<a<1,b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,且a1=1,S10=55.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,$\frac{{2}^{{b}_{n+1}}}{{2}^{{b}_{n}}}$=2${\;}^{{a}_{n}}$,求数列{$\frac{1}{{b}_{n}+n-1}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断下列函数的奇偶性:
(1)f(x)=$\frac{\sqrt{1-x}•\sqrt{1+x}}{|x-2|-2}$;
(2)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x<0}\\{-{x}^{2}+x,x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知a=8,b=4$\sqrt{6}$,A=45°,求三角形的其他边及角.

查看答案和解析>>

同步练习册答案