| A. | $\frac{π}{3}$ | B. | $\frac{2}{3}$π | C. | $\frac{π}{6}$ | D. | $\frac{5}{6}$π |
分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律可得平移后所得函数的解析式,再根据正弦函数、余弦函数的图象的对称性可得m-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,由此可得m的最小值.
解答 解:函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{1}\\{cosx}&{sinx}\end{array}|$=$\sqrt{3}$sinx-cosx=2sin(x-$\frac{π}{6}$),将其图象向左平移m(m>0)个单位长度后,
所得到的图象对应的函数解析式为 y=2sin(x+m-$\frac{π}{6}$),再根据所得图象关于y轴对称,
可得m-$\frac{π}{6}$=kπ+$\frac{π}{2}$,即m=kπ+$\frac{2π}{3}$,k∈Z,
结合所给的选项,
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | {y|0<y<$\frac{1}{2}$} | B. | {y|0<y<1} | C. | {y|$\frac{1}{2}$<y<1} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{9}{4}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 正三角形 | B. | 直角三角形 | ||
| C. | 等腰三角形 | D. | 等腰三角形或直角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com