精英家教网 > 高中数学 > 题目详情
6.定义:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{1}\\{cosx}&{sinx}\end{array}|$,将其图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{π}{6}$D.$\frac{5}{6}$π

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律可得平移后所得函数的解析式,再根据正弦函数、余弦函数的图象的对称性可得m-$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,由此可得m的最小值.

解答 解:函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{1}\\{cosx}&{sinx}\end{array}|$=$\sqrt{3}$sinx-cosx=2sin(x-$\frac{π}{6}$),将其图象向左平移m(m>0)个单位长度后,
所得到的图象对应的函数解析式为 y=2sin(x+m-$\frac{π}{6}$),再根据所得图象关于y轴对称,
可得m-$\frac{π}{6}$=kπ+$\frac{π}{2}$,即m=kπ+$\frac{2π}{3}$,k∈Z,
结合所给的选项,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={y|y=log${\;}_{\frac{1}{2}}$x,0<x<1},B={y|y=2x,x<0].则A∩B等于(  )
A.{y|0<y<$\frac{1}{2}$}B.{y|0<y<1}C.{y|$\frac{1}{2}$<y<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z=1+i(i是虚数单位),则|$\frac{2}{z}$+z2|=(  )
A.1+iB.-1+iC.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{3}{2}$C.$\frac{9}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知{a}?(A∪B)?(a,b,c,d,e},且a∈A,A∩B=∅,则满足条件的集合对(A,B)有64个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.由曲线y=$\frac{3}{x}$,x+y=4围成的平面图形绕x轴旋转而成的旋转体的体积为$\frac{8π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{\begin{array}{l}x+y+1≥0\\ 2x-y+2≥0\end{array}\right.$,若(-1,0)是使ax+y取得最大值的可行解,则实数a的取值范围是(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,角A,B,C所对边的长分别为a,b,c,满足a2+b2=2c2,则cosC的最小值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a,b,c分别为角A,B,C的对边,若cos2$\frac{B}{2}=\frac{a+c}{2c}$,则△ABC的形状为(  )
A.正三角形B.直角三角形
C.等腰三角形D.等腰三角形或直角三角形

查看答案和解析>>

同步练习册答案