精英家教网 > 高中数学 > 题目详情
18.已知集合A={-2,0,2},B={x|x=|a+2|,a∈A},集合A∩B=(  )
A.{0}B.{2}C.{0,2}D.{0,2,4}

分析 把A中元素代入B中x=|a+2|计算确定出B,找出A与B的交集即可.

解答 解:∵A={-2,0,2},B={x|x=|a+2|,a∈A},
∴当a=-2时,x=|-2+2|=0,
当a=0时,x=|0+2|=2,
当a=2时,x=|2+2|=4,
∴B={0,2,4},
∴A∩B={0,2}.
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=$\sqrt{6}$,CD=2AB=2$\sqrt{2}$,∠PAD=120°.
(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)求直线PD与平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(实验班题)已知cosα=$\frac{1}{7}$,cos(α-β)=$\frac{13}{14}$,且0<β<α<π.
(1)求sin(2α-$\frac{π}{6}$)的值;
(2)求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随机抽取某厂的某种产品400件,经质检,其中有一等品252件、二等品100件、三等品40件、次品8件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.
(Ⅰ)求ξ的分布列;
(Ⅱ)求1件产品的平均利润;
(Ⅲ)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.75万元,则三等品率最多是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若抛物线C:x=2py2过点(2,5),则抛物线C的准线方程为x=-$\frac{25}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设$\overrightarrow a$是已知的平面向量且$\overrightarrow a$≠$\overrightarrow{0}$,关于向量$\overrightarrow a$的分解,有如下四个命题:
①给定向量$\overrightarrow b$,总存在向量$\overrightarrow c$,使$\overrightarrow a$=$\overrightarrow b$+$\overrightarrow c$;
②给定向量$\overrightarrow b$和$\overrightarrow c$,总存在实数λ和μ,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
③给定单位向量$\overrightarrow b$和正数μ,总存在单位向量$\overrightarrow c$和实数λ,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
④给定正数λ和μ,总存在单位向量$\overrightarrow{b}$和单位向量$\overrightarrow c$,使$\overrightarrow a$=λ$\overrightarrow b$+μ$\overrightarrow c$;
上述命题中的向量$\overrightarrow b$,$\overrightarrow c$和$\overrightarrow a$在同一平面内且两两不共线,则真命题的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=(x+sinx)(2x-a)是偶函数,则实数a的值为(  )
A.±1B.1C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四棱柱ABCD-A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.
(1)求证:D1E⊥底面ABCD;
(2)若平面BCC1B1与平面BED1的夹角为$\frac{π}{3}$,求线段D1E的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设Sn=1-2+3-4+…+n(-1)n-1,则S8=-4.

查看答案和解析>>

同步练习册答案