精英家教网 > 高中数学 > 题目详情
4.如图,已知椭圆C:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{{b}^{2}}=1(0<b<3)$的左、右焦点分别为F1、F2,椭圆上存在一点A,使得AF1=2AF2,且∠F1AF2=90°
(1)求椭圆C的方程;
(2)已知直线l:x=1与椭圆C交于P,Q两点,点M为椭圆C上一动点,直线PM,QM与x轴分别交于点R,S,求证:|OR|•|OS|为常数(O为原点),并求出这个常数.

分析 (1)由已知列式求得c2,结合隐含条件求得b2,则椭圆方程可求;
(2)把x=1代入椭圆方程,求出P,Q的坐标,设出M的坐标,分别写出PM,QM的方程,取y=0求出R,S的横坐标,代入|OR|•|OS|,结合M在椭圆上可得|OR|•|OS|为常数9.

解答 (1)解:由AF1=2AF2,且∠F1AF2=90°,得$\left\{\begin{array}{l}{A{F}_{1}=2A{F}_{2}}\\{A{F}_{1}+A{F}_{2}=6}\\{A{{F}_{1}}^{2}+A{{F}_{2}}^{2}=4{c}^{2}}\end{array}\right.$,
解得:c2=5,∴b2=a2-c2=4,
∴椭圆方程为:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$;
(2)证明:把x=1代入椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$,得P(1,$\frac{4\sqrt{2}}{3}$),Q(1,-$\frac{4\sqrt{2}}{3}$),
设M(x0,y0),则${k}_{PM}=\frac{{y}_{0}-\frac{4\sqrt{2}}{3}}{{x}_{0}-1}$,直线PM:$y-\frac{4\sqrt{2}}{3}=\frac{{y}_{0}-\frac{4\sqrt{2}}{3}}{{x}_{0}-1}(x-1)$,
取y=0,可得${x}_{R}=\frac{3{y}_{0}-4\sqrt{2}{x}_{0}}{3{y}_{0}-4\sqrt{2}}$;同理可得:xS=$\frac{3{y}_{0}+4\sqrt{2}{x}_{0}}{3{y}_{0}+4\sqrt{2}}$.
∴|OR|•|OS|=|$\frac{9{{y}_{0}}^{2}-32{{x}_{0}}^{2}}{9{{y}_{0}}^{2}-32}$|,①
∵$\frac{{{x}_{0}}^{2}}{9}+\frac{{{y}_{0}}^{2}}{4}=1$,∴$9{{y}_{0}}^{2}=36-4{{x}_{0}}^{2}$,代入①,得|OR|•|OS|=|$\frac{9{{y}_{0}}^{2}-32{{x}_{0}}^{2}}{9{{y}_{0}}^{2}-32}$|=|$\frac{36(1-{{x}_{0}}^{2})}{4(1-{{x}_{0}}^{2})}$|=9.
∴|OR|•|OS|为常数9.

点评 本题考查椭圆标准方程的求法,考查了直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知关于x的方程(m+1)x2+2(2m+1)x+1-3m=0的两根为x1,x2,若x1<1<x2<3,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{3}$x3-(a+2)x2+a(a+4)x+5在区间(-1,2)内单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x-y-12=0.
(1)求函数f(x)的解析式;
(2)求f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设f(x)是定义在R上的函数,其导函数为f′(x),若f(x)-f′(x)<1,f(0)=2016,则不等式f(x)>2015ex+1的解集为(  )
A.(-∞,0)∪(0,+∞)B.(0,+∞)C.(2015,+∞)D.(-∞,0)∪(2015,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知t<0,设函数f(x)=x3+$\frac{3(t-1)}{2}{x^2}$-3tx.
(1)若f(x)在(0,2)上无极值,求t的值;
(2)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最大值,求t的取值范围;
(3)若f(x)≤xex-m(e为自然对数的底数)对任意x∈[0,+∞)恒成立时m的最大值为0,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=-x3+3x2+9x+m在区间[-2,2]上的最大值是20,则实数m的值等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$f(x)=-\frac{1}{2}a{x^2}+x-ln(1+x)$,其中a>0.
(Ⅰ)若函数f(x)在x=3处取得极值,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在[0,+∞)上的最大值是0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,设其左右焦点为F1,F2,过F2的直线l交椭圆于A,B两点,三角形F1AB的周长为8.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,若OA⊥OB,求直线l的方程.

查看答案和解析>>

同步练习册答案