分析 (1)求出函数的导数,计算f′(1),f(1),得到关于a,b的方程组,求出a,b的值,从而求出f(x)的解析式即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可.
解答 解:(1)求导f′(x)=$\frac{a}{x}$+2x+b,由题意得:
f′(1)=4,f(1)=-8,
则$\left\{\begin{array}{l}{f(1)=b+2=-8}\\{f′(1)=a+b+2=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=12}\\{b=-10}\end{array}\right.$,
所以f(x)=12lnx+x2-10x+1;
(2)f(x)定义域为(0,+∞),
f′(x)=$\frac{2{(x}^{2}-5x+6)}{x}$,
令f′(x)>0,解得:x<2或x>3,
所以f(x)在(0,2)递增,在(2,3)递减,在(3,+∞)递增,
故f(x)极大值=f(2)=12ln2-15,
f(x)极小值=f(3)=12ln3-20.
点评 本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 分析法 | B. | 反证法 | C. | 综合法 | D. | 间接证明法 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com