分析 (1)由已知A1A⊥平面ABC,可得A1A⊥BC,再由AD⊥平面A1BC,得AD⊥BC.然后利用线面垂直的判定得BC⊥平面A1AB,从而得到BC⊥A1B;
(2)由(1)可得BC⊥平面A1AB,AB?平面A1AB,从而BC⊥AB,如图,以点B为原点建立空间直角坐标系B-xyz,求出平面的法向量,利用向量的夹角公式,即可求二面角P-A1B-C的平面角的余弦值.
解答
(1)证明:如图,∵A1A⊥平面ABC,BC?平面ABC,
∴A1A⊥BC,
∵AD⊥平面A1BC,且BC?平面A1BC,
∴AD⊥BC.又AA1?平面A1AB,
AD?平面A1AB,A1A∩AD=A,
∴BC⊥平面A1AB,
又A1B?平面A1BC,
∴BC⊥A1B;
(2)解:由(1)可得BC⊥平面A1AB,AB?平面A1AB,从而BC⊥AB,如图,以点B为原点建立空间直角坐标系B-xyz,
在Rt△ABD中,AD=$\sqrt{3}$,AB=2,sin∠ABD=$\frac{\sqrt{3}}{2}$,∠ABD=60°,
在直三棱柱ABC-A1B1C1中,AA1=2$\sqrt{3}$,
则B(0,0,0),A(0,2,0),P(1,1,0),A1(0,2,2$\sqrt{3}$),
$\overrightarrow{BP}$=(1,1,0),$\overrightarrow{B{A}_{1}}$=(0,2,2$\sqrt{3}$),$\overrightarrow{BC}$=(2,0,0),
设平面PA1B的一个法向量为$\overrightarrow{n}$=(x,y,z),则有$\left\{\begin{array}{l}{x+y=0}\\{2y+2\sqrt{3}z=0}\end{array}\right.$,
可得$\overrightarrow{n}$=(3,-3,$\sqrt{3}$).
设面A1BC的一个法向量为$\overrightarrow{m}$=(a,b,c),则$\left\{\begin{array}{l}{a=0}\\{2b+2\sqrt{3}c=0}\end{array}\right.$,
即$\overrightarrow{m}$=(0,-3,$\sqrt{3}$),
则二面角P-A1B平面角的余弦值为$\frac{9+3}{\sqrt{9+9+3}•\sqrt{9+3}}$=$\frac{2\sqrt{7}}{7}$.
点评 本小题主要考查空间线面关系、二面角的度量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com