精英家教网 > 高中数学 > 题目详情
2.如图所示,在三棱柱ABC-A1B1C1中,A1A⊥底面ABC,点A在平面A1BC中的投影为线段A1B上的点D.
(1)求证:BC⊥A1B
(2)点P为AC上一点,若AP=PC,AD=$\sqrt{3}$,AB=BC=2,求二面角P-A1B-C的平面角的余弦值.

分析 (1)由已知A1A⊥平面ABC,可得A1A⊥BC,再由AD⊥平面A1BC,得AD⊥BC.然后利用线面垂直的判定得BC⊥平面A1AB,从而得到BC⊥A1B;
(2)由(1)可得BC⊥平面A1AB,AB?平面A1AB,从而BC⊥AB,如图,以点B为原点建立空间直角坐标系B-xyz,求出平面的法向量,利用向量的夹角公式,即可求二面角P-A1B-C的平面角的余弦值.

解答 (1)证明:如图,∵A1A⊥平面ABC,BC?平面ABC,
∴A1A⊥BC,
∵AD⊥平面A1BC,且BC?平面A1BC,
∴AD⊥BC.又AA1?平面A1AB,
AD?平面A1AB,A1A∩AD=A,
∴BC⊥平面A1AB,
又A1B?平面A1BC,
∴BC⊥A1B;
(2)解:由(1)可得BC⊥平面A1AB,AB?平面A1AB,从而BC⊥AB,如图,以点B为原点建立空间直角坐标系B-xyz,
在Rt△ABD中,AD=$\sqrt{3}$,AB=2,sin∠ABD=$\frac{\sqrt{3}}{2}$,∠ABD=60°,
在直三棱柱ABC-A1B1C1中,AA1=2$\sqrt{3}$,
则B(0,0,0),A(0,2,0),P(1,1,0),A1(0,2,2$\sqrt{3}$),
$\overrightarrow{BP}$=(1,1,0),$\overrightarrow{B{A}_{1}}$=(0,2,2$\sqrt{3}$),$\overrightarrow{BC}$=(2,0,0),
设平面PA1B的一个法向量为$\overrightarrow{n}$=(x,y,z),则有$\left\{\begin{array}{l}{x+y=0}\\{2y+2\sqrt{3}z=0}\end{array}\right.$,
可得$\overrightarrow{n}$=(3,-3,$\sqrt{3}$).
设面A1BC的一个法向量为$\overrightarrow{m}$=(a,b,c),则$\left\{\begin{array}{l}{a=0}\\{2b+2\sqrt{3}c=0}\end{array}\right.$,
即$\overrightarrow{m}$=(0,-3,$\sqrt{3}$),
则二面角P-A1B平面角的余弦值为$\frac{9+3}{\sqrt{9+9+3}•\sqrt{9+3}}$=$\frac{2\sqrt{7}}{7}$.

点评 本小题主要考查空间线面关系、二面角的度量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.观察下列各图,并阅读下面的文字,像这样,2、3、4条直线相交,交点的个数最多分别为1、3、6个,其通项公式an=$\frac{1}{2}$n(n-1).(an为n条直线的交点的最多个数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过(4,0)的直线与抛物线y2=4x交于A(x1y1),B(x2,y2)两点.
(1)求证:x1x2,y1y2均为定值.
(2)求证:以线段AB为直径的圆经过一定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数y=16-x2,那么当x∈(-∞,-4)∪(4,+∞)时,y<0;当x±4时,y=0;当x(-4,4)时,y>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=e2x(e2x-4a)+x(x-2a)+5a2,若?x0∈R,使得f(x0)≤$\frac{1}{5}$成立,则实数a的值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知(x2+2x+2)5=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则$\sum_{i=1}^{10}{a}_{i}$的值为31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的方程(m+1)x2+2(2m+1)x+1-3m=0的两根为x1,x2,若x1<1<x2<3,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某班从6名班干部(其中男生4人,女生2人)中,任选3人参加学校的义务劳动.
(1)设所选3人中女生人数为X,求X的分布列及期望;
(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B|A).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+x2+bx+1在点(1,f(1))处的切线方程为4x-y-12=0.
(1)求函数f(x)的解析式;
(2)求f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案