精英家教网 > 高中数学 > 题目详情
7.已知函数y=16-x2,那么当x∈(-∞,-4)∪(4,+∞)时,y<0;当x±4时,y=0;当x(-4,4)时,y>0.

分析 根据函数y=16-x2的图象开口朝下,且与x轴交于(±4,0)点,可得答案.

解答 解:∵函数y=16-x2的图象开口朝下,且与x轴交于(±4,0)点,
故当x∈(-∞,-4)∪(4,+∞)时,y<0;
当x=±4时,y=0;
当x∈(-4,4)时,y>0;
故答案为:(-∞,-4)∪(4,+∞),±4,(-4,4)

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.抛物线y2=4x的准线与x轴交于A点,焦点是F,P是位于x轴上方的抛物线上的任意一点,令m=$\frac{{|{PF}|}}{{|{PA}|}}$,当m取得最小值时,PA的斜率是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆C:$\frac{x^2}{4}+{y^2}$=1,过点D(0,4)的直线l与椭圆C交于不同两点M,N(M在D,N之间),有以下四个结论:
①若$\left\{{\begin{array}{l}{{x^'}=x}\\{{y^'}=2y}\end{array}}$,椭圆C变成曲线E,则曲线E的面积为4π;
②若A是椭圆C的右顶点,且∠MAN的角平分线是x轴,则直线l的斜率为-2;
③若以MN为直径的圆过原点O,则直线l的斜率为±2$\sqrt{5}$;
④若$\overrightarrow{DN}=λ\overrightarrow{DM}$,则λ的取值范围是1<λ≤$\frac{5}{3}$.
其中正确的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若关于x的一元二次方程3x2+2ax+1=0没有实数根,则a的取值范围是(  )
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.(-$\sqrt{3}$,$\sqrt{3}$)C.[-$\sqrt{3}$,$\sqrt{3}$]D.[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某工厂某产品产量y(千件)与单位成本x(元)满足线性回归方程$\widehat{y}$=75.7-2.13x,则以下说法中正确的是(  )
A.产量每增加1000件,单位成本下降2.13元
B.产量每减少1000件,单位成本下降2.13元
C.产量每增加1000件,单位成本上升2130元
D.产量每减少1000件,单位成本上升2130元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意x∈[m,n]均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的;否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a),与f2(x)=loga$\frac{1}{x-a}$(a>0,a≠1),给定区间[a+2,a+3].
(1)若f1(x)与f1(x)在给定区间[a+2,a+3]上都有意义,求a的取值范围;
(2)讨论f1(x)与f1(x)在给定区间[a+2,a+3]上是否是接近的?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在三棱柱ABC-A1B1C1中,A1A⊥底面ABC,点A在平面A1BC中的投影为线段A1B上的点D.
(1)求证:BC⊥A1B
(2)点P为AC上一点,若AP=PC,AD=$\sqrt{3}$,AB=BC=2,求二面角P-A1B-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.斜棱柱侧棱长为1,侧面积为2,则直截面(垂直于侧棱且每一条侧棱都相交的截面)的周长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数g(x)=x2-(2a+1)x+alnx.
(1)当a=1时,求函数g(x)的单调增区间;
(2)求函数g(x)在区间[1,e]上的最值.

查看答案和解析>>

同步练习册答案