精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
9x
1+ax2
(a>0).
(1)若a=1,求f(x)在x∈(0,+∞)时的最大值;
(2)若直线y=-x+2a是曲线y=f(x)的切线,求实数a的值.
考点:利用导数研究曲线上某点切线方程,导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(1)通过a=1,化简函数的表达式,利用基本不等式求解f(x)在x∈(0,+∞)时的最大值;
(2)设出切点坐标,求出函数的导数,利用切线的向量为1,推出关系式,通过直线y=-x+2a是曲线y=f(x)的切线,列出方程即可求实数a的值.
解答: 解:(1)当a=1时,f(x)=
9x
1+x2
=
9
1
x
+x
9
2
,当x=1时取“=”;
(2)设切点(x0,y0),则f′(x)=
9(1-ax2)
(1+ax2)2

f′(x0)=
9(1-a
x
2
0
)
(1+a
x
2
0
)
2
=-1
,得a2
x
4
0
-7a
x
2
0
+10=0
a
x
2
0
=2或a
x
2
0
=5
…①
又由切线,则f(x0)=-x0+2a则:-x0+2a=
9x0
1+a
x
2
0
…②
由将①代入②得(-x0+2a)(1+a
x
2
0
)=9x0

a
x
2
0
=2
x0
2
a
:得(2a?
2
a
)(1+2)=±9
2
a
,解得a=2
a
x
2
0
=5
x0
5
a
:得(2a?
5
a
)(1+5)=±9
5
a
,解得a=
5
34
4

即a=2或a=
5
34
4
点评:本题考查函数的导数的应用,基本不等式的应用,切线方程的求法,考查转化思想以及计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-x+c(x∈R),则下列结论错误的是(  )
A、函数f(x)一定存在极大值和极小值
B、若f(x)在(-∞,x1)、(x2,+∞)上是增函数,则x2-x1
2
3
3
C、函数f(x)在点(x0,f(x0))处的切线与f(x)的图象必有两个不同公共点
D、函数f(x)的图象是中心对称图形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4x-2xt+t+1在区间(0,+∞)上的图象恒在x轴上方,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AB∥DC,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1.
(1)证明:平面PAD⊥平面PCD;
(2)设AB,PA,BC的中点依次为M、N、T,求证:PB∥平面MNT;
(3)求异面直线AC与PB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2cos(
1
3
x-
π
4
)的周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的周期为6的奇函数,且f(1)=1,则f(5)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在[-2,2]上的单调减函数,且f(a+1)<f(2a),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设U={x∈N|x≤7},A={2,4,5 },B={ 4,5,6 },C={3,5,7},求(A∩B)∪C,(A∪B)∩C,(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,将平面四边形ABCD折成空间四边形,当平面四边形满足条件
 
时,空间四边形中的两条对角线互相垂直(填一个正确答案就可以,不必考虑所有可能情形).

查看答案和解析>>

同步练习册答案