精英家教网 > 高中数学 > 题目详情
函数f(x)=x3-3x+m恰好有两个零点,则m的值为
 
考点:利用导数研究函数的极值,函数零点的判定定理,利用导数研究函数的单调性
专题:函数的性质及应用,导数的概念及应用,导数的综合应用
分析:若函数f(x)恰好有两个不同的零点,等价为函数的极值为0,建立方程即可得到结论
解答: 解::∵f(x)=x3-3x+m,
∴f'(x)=3x2-3,
由f'(x)>0,得x>1或x<-1,此时函数单调递增,
由f'(x)<0,得-1<x<1,此时函数单调递减.
即当x=-1时,函数f(x)取得极大值,当x=1时,函数f(x)取得极小值.
要使函数f(x)=x3-3x+a只有两个零点,则满足极大值等于0或极小值等于0,
由极大值f(-1)=-1+3+m=m+2=0,解得m=-2;再由极小值f(1)=1-3+m=m-2=0,解得m=2.
综上实数m的取值范围:m=-2或m=2,
故答案为:-2或2.
点评:本题主要考查三次函数的图象和性质,利用导数求出函数的极值是解决本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

全集U=R,集合A={x|4≤x<5},B={x|k+1<x≤2k-1},若A∩B=∅,求整数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各式中,值为正数的是(  )
A、cos2-sin2
B、tan3•cos2
C、sin2•tan2
D、cos2•sin2

查看答案和解析>>

科目:高中数学 来源: 题型:

某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和厢期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=p.qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p(以上三式中p,q均为常数,且q>l).
(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);
(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5].其中x=0表示8月1日,x=l表示9月1日,…,以此类推);
(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=lg(x2-x-2)的定义域为集合A,函数g(x)=
3-|x|
的定义域为集合B.
(1)求A∩B;
(2)若C={x|(x+2-p)(x+2+p)<0,p>0},且C⊆(A∩B)求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在角
3
的终边上,且|OP|=4,则P点的坐标为 (  )
A、(-2,-2
3
)
B、(-
1
2
,-
3
2
)
C、(-2
3
,-2)
D、(-
3
2
,-
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(
π
6
-θ)=
1
3
,则cos(
3
+2θ)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ),(A,ω,φ)为常数,A>0,ω>0)的部分图象如图所示,
(1)求f(x)的解析式; 
(2)当x∈[0,
π
2
]时,函数F(x)=f(x)-m存在零点,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个空间几何体的三视图,则该几何体的体积为(  )
A、
4
3
3
B、4
3
C、8
D、12

查看答案和解析>>

同步练习册答案