精英家教网 > 高中数学 > 题目详情
4.已知P={x|x2+2x-3<0},Q={-2,-1,0,1,2},则P∩Q=(  )
A.{-1,0,1}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0}

分析 先分别求出集合P,Q,由此能求出P∩Q.

解答 解:∵P={x|x2+2x-3<0}={x|-3<x<1},
Q={-2,-1,0,1,2},
∴P∩Q={-2,-1,0}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输出的S的值为12,则输入的a值可以为(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.我们知道:“平面中到定点等于定长的点轨迹是圆”拓展至空间:“空间中到定点的距离等于定长的点的轨迹是球”,类似可得:已知A(-1,0,0),B(1,0,0),则点集{P(x,y,z)||PA|-|PB|=1}在空间中的轨迹描述正确的是(  )
A.以A,B为焦点的双曲线绕轴旋转而成的旋转曲面
B.以A,B为焦点的椭球体
C.以A,B为焦点的双曲线单支绕轴旋转而成的旋转曲面
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=5+5cost\\ y=4+5sint\end{array}\right.$(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a、b、c是△ABC的三条边长,则下列结论中正确的个数是(  )
①对于一切x∈(-∞,1)都有f(x)>0;
②存在x>0使ax,bx,cx不能构成一个三角形的三边长;
③若△ABC为钝角三角形,则存在x∈(1,2),使f(x)=0.
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=ex(x2+x+1),定义f1(x)=f'(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.经计算:f1(x)=ex(x2+3x+2);f2(x)=ex(x2+5x+5);f3(x)=ex(x2+7x+10),…照此规律,则fn(x)=fn(x)=ex[x2+(2n+1)x+n2+1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.袋中装有除颜色外形状大小完全相同的6个小球,其中有4个编号为1,2,3,4的红球,2个编号为A、B的黑球,现从中任取2个小球.
(Ⅰ)求所取取2个小球都是红球的概率;
(Ⅱ)求所取的2个小球颜色不相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年10月21日,台风“海马”导致江苏、福建、广东3省11市51个县(市、区)189.9万人受灾,某调查小组调查了受灾某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出频率分布直方图.
(Ⅰ)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如表所示,在表格空白处填写正确数字,并说明能否在犯错误的概率不超过0.05的前提下认为捐款数额超过或不超过500元和自身经济损失是否超过4000元有关?
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样的方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
经济损失不超过4000元经济损失超过4000元总计
捐款超过500元60
捐款不超过500元10
总计
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:
B餐厅分数频数分布表
分数区间频数
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
定义学生对餐厅评价的“满意度指数”如下:
分数[0,30)[30,50)[50,60]
满意度指数012
(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

同步练习册答案