精英家教网 > 高中数学 > 题目详情
等差数列{an}中,a3=6,S4=20,等比数列{bn}中,b3=a2,b4=a4
(1)求数列{an}的通项an
(2)求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列的通项公式和前n项和公式求出首项和公差,由此求出an=2n.
(2)由(1)得b3=4,b4=8,由此求出等比数列的公比q=2,和bn=b3qn-3=4•2n-3=2n-1,从而能求出数列{bn}的前n项和Tn
解答: 解:(1)由题意:4a1+6d=20
a1=2
解之得:d=2
∴an=2+2(n-1)=2n
(2)b3=4,b4=8
∵{bn}为等比数列∴q=2,
bn=b3qn-3=4•2n-3=4•2n-3=2n-1
Tn=
1-2n-1•2
1-2
=2n-1.
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,注意等差数列和等比数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=
x
lnx
,f(x)=g(x)-ax(a>0)

(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)若函数f(x)(1,+∞)上是减函数,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C所对的边分别为a,b,c,a=
15
,b=2,向量
m
=(-1,
3
),
n
=(cosA,sinA),且
m
n
=1.
(1)求角A;
(2)求
1+sin2B
cos2B-sin2B
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

记者在街上随机统计10位行人在2014年1月份内接收到的垃圾短信的条数,将数据整理如图所示的茎叶图:
(Ⅰ)计算这组数据的平均数及方差;
(Ⅱ)从这10人中随机抽取2人,记这2人中在这个月内接收到的垃圾短信少于10条的人数为X,求随机变量X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1.
1)求{an}、{bn}的通项公式;
2)若cn=anbn,{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-ax+(a-1)lnx,a≥2

(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)证明:若a<5,则对任意x1x2∈(0,+∞),
x
 
1
x2
,有
f(x1)-f(x2)
x1-x2
>-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的渐近线方程为3x±4y=0,并且经过点M(1,3),求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目新闻节目总计
20至40岁401858
大于40岁152742
总计5545100
(1)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(2)在上述抽取的5名观众中任取3名,求恰有1名观众的年龄为20至40岁的概率.
(3)在上述抽取的5名观众中任取3名,求至少有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题:“?x∈R,5x+3>m”为真命题,则m的取值范围是
 

查看答案和解析>>

同步练习册答案