分析 (Ⅰ)求出函数的导数,求得切线的斜率和切点,解方程组可得a,b,进而得到所求解析式;
(Ⅱ)求出函数的导数,由导数的单调性和零点存在定理,可得存在x0∈(1,2)使得f′(x)=0,证明f(x0)为最小值,且大于0,即可得证.
解答 (Ⅰ)解:∵函数f(x)的导数$f'(x)=lnx+\frac{x+a}{x}$,
∴f′(1)=1+a=-1,即a=-2,
又点(1,f(1))在切线x+y-2=0上,
∴1+b-2=0,即b=1,
∴y=f(x)的解析式为f(x)=(x-2)lnx+1;
(Ⅱ)证明:由(Ⅰ)知${f^'}(x)=lnx+\frac{x-2}{x}=lnx-\frac{2}{x}+1$,
又∵f′(x)在(0,+∞)内单调递增,
且f′(1)=-1<0,f′(2)=ln2>0,
∴存在x0∈(1,2)使得f′(x)=0.
当0<x<x0时,f′(x)<0,f(x)递减;
当x>x0时,f′(x)>0,f(x)递增.
∴f(x)≥f(x0)=(x0-2)lnx0+1.
由f′(x0)=0得$ln{x_0}=\frac{2}{x_0}-1$,
∴$f(x)≥f({x_0})=({x_0}-2)ln{x_0}+1=({x_0}-2)(\frac{2}{x_0}-1)+1=5-({x_0}+\frac{4}{x_0})$.
令$r(x)=x+\frac{4}{x}(1<x<2)$,则${r^'}(x)=1-\frac{4}{x^2}=\frac{(x+2)(x-2)}{x^2}<0$,
∴r(x)在区间(1,2)内单调递减,所以r(x)<r(1)=5,
∴$f(x)>5-(x+\frac{4}{x})>5-5=0$.
综上,对任意x∈(0,+∞),f(x)>0.
点评 本题考查导数的运用:求切线的斜率和单调区间、最值,考查不等式的证明,注意运用函数零点存在定理和构造法,运用单调性是解题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{π}{4}$,0) | B. | (0,0) | C. | ($\frac{θ}{2}$,0) | D. | (θ,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$i | B. | $\frac{1}{5}$ | C. | -$\frac{2}{5}$ | D. | -$\frac{2}{5}$i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com