精英家教网 > 高中数学 > 题目详情
1.某几何体的一条棱长为3,在该几何体的正视图中,这条棱的投影长为2的线段,在该几何体的侧视图和俯视图中,这条棱长的投影长分别是a和b的线段,则a+b的最大值为(  )
A.2$\sqrt{2}$B.2$\sqrt{7}$C.4D.2$\sqrt{6}$

分析 由棱和它在三视图中的投影扩展为长方体,三视图中的三个投影,是三个面对角线,设出三度,利用勾股定理,基本不等式求出最大值.

解答 解:将已知中的棱和它在三视图中的投影扩展为长方体,
三视图中的三个投影,是三个面对角线,
则设长方体的三度:x、y、z,
所以x2+y2+z2=9,x2+y2=a2,y2+z2=b2
x2+z2=4可得a2+b2=14
∵(a+b)2≤2(a2+b2
a+b≤2$\sqrt{7}$,
∴a+b的最大值为2$\sqrt{7}$,
故选:B.

点评 本题考查三视图,几何体的结构特征,考查空间想象能力,基本不等式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=kx-2,f(1)=-1,则f(2)=(  )
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sinα<0且tanα>0,则角α所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设满足y≥|x-a|的点(x,y)的集合为A,满足y≤-|x|+b的点(x,y)的集合为B,其中a,b为正数.
(1)用平面区域表示出集合A、B,并探求a,b的关系式,使A∩B≠∅.
(2)在(1)的条件下,求A∩B表示区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{x+\frac{1}{4x},x>0}\end{array}\right.$,若函数y=g(f(x))-a有4个零点,则实数a的取值范围是(  )
A.(0,1]B.($\frac{1}{2}$,1]C.($\frac{1}{2}$,$\frac{5}{4}$)D.[1,$\frac{5}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=1,且an+1=2an+1,
(1)求{an}的通项公式an
(2)若bn=4n-1,${c_n}=\frac{{{a_n}+1}}{2}$,求数列{bn•cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(-1,0),下列结论:①abc<0;②b2-4ac=0;③a>2;④4a-2b+c>0.其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且Sn=n2-4n+4,(n∈N*).
(1)求数列{an}的通项公式;
(2)数列{bn}中,令bn=$\left\{\begin{array}{l}{1,n=1}\\{\frac{{a}_{n}+5}{2},n≥2}\end{array}\right.$,Tn=$\frac{1}{{{b}_{1}}^{2}}+\frac{1}{{{b}_{2}}^{2}}+\frac{1}{{{b}_{3}}^{2}}+…\frac{1}{{{b}_{n}}^{2}}$,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+3}$(n∈N*).
(1)求证:{$\frac{1}{{a}_{n}}+\frac{1}{2}$}是等比数列,并求{an}的通项公式an
(2)数列{bn}满足bn=(3n-1).$\frac{n}{{2}^{n}}$.an,数列{bn}的前n项和为Tn
若不等式(-1)nλ<Tn+$\frac{n}{{2}^{n-1}}$对一切n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案