【题目】已知椭圆的右顶点为,上顶点为,离心率, 为坐标原点,圆与直线相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知四边形内接于椭圆.记直线的斜率分别为,试问是否为定值?证明你的结论.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线.以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线、的极坐标方程;
(2)射线与曲线、分别交于点(且均异于原点)当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图四棱锥中, 平面,底面是梯形, , , , , , 为的中点, 为上一点,且().
(1)若时,求证: 平面;
(2)若直线与平面所成角的正弦值为,求异面直线与直线所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为(为参数).以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,设直线的极坐标方程为.
(1)求曲线和直线的普通方程;
(2)设为曲线上任意一点,求点到直线的距离的最值.
【答案】(1), ;(2)最大值为,最小值为
【解析】试题分析:(1)根据参数方程和极坐标化普通方程化法即易得结论的普通方程为;直线的普通方程为.(2)求点到线距离问题可借助参数方程,利用三角函数最值法求解即可故设, .即可得出最值
解析:(1)根据题意,由,得, ,
由,得,
故的普通方程为;
由及, 得,
故直线的普通方程为.
(2)由于为曲线上任意一点,设,
由点到直线的距离公式得,点到直线的距离为
.
∵ ,
∴ ,即 ,
故点到直线的距离的最大值为,最小值为.
点睛:首先要熟悉参数方程和极坐标方程化普通方程的方法,第一问基本属于送分题所以务必抓住,对于第二问可以总结为一类题型,借助参数方程设点的方便转化为三角函数最值问题求解
【题型】解答题
【结束】
23
【题目】已知函数,.
(1)解关于的不等式;
(2)若函数的图象恒在函数图象的上方,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国政府实施“互联网+”战略以来,手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式,“一机在手,走遍天下”的时代已经到来。在某著名的夜市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(1)根据已知条件完成列联表,并根据此资料判断是否有的把握认为“市场购物用手机支付与年龄有关”?
(2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件为“从这个样本中任选2人,这2人中至少有1人是不使用手机支付的”,求事件发生的概率?
列联表
青年 | 中老年 | 合计 | |
使用手机支付 | 60 | ||
不使用手机支付 | 24 | ||
合计 | 100 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()在同一半周期内的图象过点, , ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.
(1)求的值;
(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线()上(如图所示),试判断点是否也落在曲线()上,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com