【题目】如图四棱锥中, 平面,底面是梯形, , , , , , 为的中点, 为上一点,且().
(1)若时,求证: 平面;
(2)若直线与平面所成角的正弦值为,求异面直线与直线所成角的余弦值.
【答案】(1)见解析;(2)直线与直线所成角的余弦值为.
【解析】试题分析:(1)第一问,要证明平面,只需要证明,只需要证明四边形是平行四边形. (2)第二问,一般利用向量的方法解答.先根据直线与平面所成角的正弦值为求出,再异面直线所成的角的公式求出直线与直线所成角的余弦值为.
试题解析:(1)证明:若时, ,在上取,
连接, ,∵, , ,
∴,且,
∵为的中点, ,∴,
又∵,∴,
∴四边形是平行四边形,∴,
又∵平面, 平面,
∴平面.
(2)如图所示,
过点作于,则,则以为坐标原点建立空间直角坐标系,
∴点, , , , , , , ,
,
设平面的法向量为,则即令,则, ,
∴,
设直线与平面所成的角为,则
,
解得,则, , ,
设直线与直线所成角为,
则,
所以直线与直线所成角的余弦值为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(其中为参数),曲线,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.
(1)求曲线的普通方程和曲线的极坐标方程;
(2)若射线与曲线,分别交于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线y=x+b与函数f(x)=ln x的图象交于两个不同的点A,B,其横坐标分别为x1,x2,且x1<x2.
(1)求b的取值范围;
(2)当x2≥2时,证明x1·<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右顶点为,上顶点为,离心率, 为坐标原点,圆与直线相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知四边形内接于椭圆.记直线的斜率分别为,试问是否为定值?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018湖北七市(州)教研协作体3月高三联考】已知椭圆: 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.
(I)求椭圆的方程;
(II)如图,若直线: 与椭圆交于, 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.
【答案】(I);(II)
【解析】试题分析:(1)根据题意可得, 故斜率为,由直线与直线垂直,可得,因为点是线段的中点,∴点的坐标是,
代入直线得,连立方程即可得, ;(2)∵四边形为平行四边形,∴,设, , ,∴ ,得,将点坐标代入椭圆方程得,
点到直线的距离为,利用弦长公式得EF,则平行四边形的面积为
.
解析:(1)由题意知,椭圆的左顶点,上顶点,直线的斜率,
得,
因为点是线段的中点,∴点的坐标是,
由点在直线上,∴,且,
解得, ,
∴椭圆的方程为.
(2)设, , ,
将代入消去并整理得 ,
则, ,
,
∵四边形为平行四边形,∴ ,
得,将点坐标代入椭圆方程得,
点到直线的距离为, ,
∴平行四边形的面积为
.
故平行四边形的面积为定值.
【题型】解答题
【结束】
21
【题目】已知函数, .
(1)当时,讨论函数的单调性;
(2)当时,求证:函数有两个不相等的零点, ,且.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,曲线的直角坐标方程是(为参数).
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)求曲线与曲线交点的极坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com