精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的导函数f′(x)=3x2-2x-1,f(0)=1
(1)求y=f(x)的解析式;
(2)求函数y=f(x)在[-1,2]上的最大值和最小值.
考点:利用导数求闭区间上函数的最值,导数的运算,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)由题意设f(x)=x3-x2-x+a,由f(0)=1,示出f(x)=x3-x2-x+1.
(2)当f′(x)>0时,x<-
1
3
,或x>1,当f′(x)<0时,-
1
3
<x<1
,由此利用导数性质能求出函数y=f(x)在[-1,2]上的最大值和最小值.
解答: 解:(1)∵f′(x)=3x2-2x-1,
∴设f(x)=x3-x2-x+a,…(3分)
∵f(0)=1,∴a=1,∴f(x)=x3-x2-x+1.…(6分)
(2)当f′(x)>0时,x<-
1
3
,或x>1,
当f′(x)<0时,-
1
3
<x<1

∴f(x)在区间(-1,-
1
3
),(1,2)内单调递增,在(-
1
3
,1)内单调递减…(9分)
∴f(x)极大值=f(-
1
3
)=
32
27
,f(x)极小值=f(1)=0,
又f(-1)=0,f(2)=3,
∴f(x)在[-1,2]上的最大值为f(2)=3,最小值为f(-1)=f(1)=0.…(12分)
点评:本题主要考查函数与导数等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、数形结合思想、函数与方程思想、化归与转化思想等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={y|y>1},N={y|y=x2,x∈R},则M∩N=(  )
A、(0,+∞)
B、[0,+∞)
C、(1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx+12在点(1,f(1))处的切线方程为9x+y-10=0.
(Ⅰ)求a、b的值;
(Ⅱ)设函数f(x)在[0,m](m>0)上的最大值为g(m),求函数g(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了绿化城市,准备在如图所示的区域DFEBC内修建一个矩形PQRC的草坪,并建立如图平面直角坐标系,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m.
(1)求直线EF的方程;
(2)应如何设计才能使草坪的占地面积最大?并求最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,为什么?
(2)若方程ax2-x-1=0在(0,1)内恰有一解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,且PA=AB=1,F为PB中点.
(Ⅰ)求证:AF⊥平面PBC;
(Ⅱ)若AD=2,求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)若函数f(x)在区间(2a-1,a+
1
4
)内有极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)e n-2+
2
n+1
(n∈N*,e为自然对数的底数,e≈2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+2ax+1=0,a∈R,x∈R}.若A中只有一个元素,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+a)2+lnx.
(1)当a=
2
时,求函数f(x)在[1,+∞)上的最小值;
(2)若函数f(x)在[2,+∞)上递增,求实数a的取值范围;
(3)若函数f(x)有两个极值点x1、x2,且x1∈(0,
1
2
),证明:f(x1)-f(x2)>
3
4
-ln2.

查看答案和解析>>

同步练习册答案