精英家教网 > 高中数学 > 题目详情
为了绿化城市,准备在如图所示的区域DFEBC内修建一个矩形PQRC的草坪,并建立如图平面直角坐标系,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m.
(1)求直线EF的方程;
(2)应如何设计才能使草坪的占地面积最大?并求最大面积.
考点:基本不等式在最值问题中的应用
专题:应用题,函数的性质及应用
分析:(1)建立平面直角坐标系,直线EF过点E(30,0),F(0,20),其方程由截距式可得;
(2)点Q在直线EF上,可设点Q(x,20-
2
3
x)
,矩形PQRC的面积S=(100-x)•[80-(20-
2
3
x)],计算S取最大值时对应的x的值,从而得点Q的坐标即可.
解答: 解:(1)如图,在线段EF上任取一点Q,分别向BC,CD作垂线,
由题意,直线EF的方程为:
x
30
+
y
20
=1,即2x+3y-60=0
.…(4分)
(2)设Q(x,20-
2
3
x)
,则长方体的面积S=(100-x)[80-(20-
2
3
x)](0≤x≤30)

化简后得S=-
2
3
x2+
20
3
x+6000(0≤x≤30)
,配方后易得x=5,y=
50
3
时,S最大,
其最大值为6016
2
3
m2
…(12分)
点评:本题考查函数模型的构建,考查配方法求函数的最值,考查利用数学知识解决实际问题,正确表达出矩形PQCR的面积是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}定义如下:a1=1,a2=2,an+2=
2(n+1)
n+2
an+1-
n
n+2
an,n=1,2,…,若am>2+
2011
2012
,则正整数m的最小值为(  )
A、4025B、4250
C、3650D、4425

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=6,BC=2
3
,沿对角线BD将△ABD向上折起,使点A移至点P,且点P在平面BCD内的投影O在CD上.
(1)求二面角P-DB-C的正弦值;
(2)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
tanα
tanα-1
=-1,求
sinα-3cosα
sinα+cosα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OP
=(2cosx+1,cos2x-sinx+1),
OQ
=(cosx,-1),定义f(x)=
OP
OQ

(1)求出f(x)的解析式.当x≥0时,它可以表示一个振动量,请指出其振幅,相位及初相.
(2)f(x)的图象可由y=sinx的图象怎样变化得到?
(3)若f(α)>
2
2
且α为△ABC的一个内角,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点B在以AC为直径的圆上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(Ⅰ)证明:SC⊥EF;
(Ⅱ)若SA=a,∠ASC=45°,∠AFE=30°,求三棱锥S-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的导函数f′(x)=3x2-2x-1,f(0)=1
(1)求y=f(x)的解析式;
(2)求函数y=f(x)在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(ax+b),曲线y=f(x)的经过点P(0,2),且在点P处的切线为l:y=4x+2.
(Ⅰ)求常数a,b的值;
(Ⅱ)证明:f(x)≥4x+2;
(Ⅲ)是否存在常数k,使得当x∈[-2,-1]时,f(x)≥k(4x+2)恒成立?若存在,求常数k的取值范围;若不存在,简要说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2sin2x+2cosx-3的最大值.

查看答案和解析>>

同步练习册答案