精英家教网 > 高中数学 > 题目详情
已知向量
OP
=(2cosx+1,cos2x-sinx+1),
OQ
=(cosx,-1),定义f(x)=
OP
OQ

(1)求出f(x)的解析式.当x≥0时,它可以表示一个振动量,请指出其振幅,相位及初相.
(2)f(x)的图象可由y=sinx的图象怎样变化得到?
(3)若f(α)>
2
2
且α为△ABC的一个内角,求α的取值范围.
考点:平面向量数量积的运算,三角函数中的恒等变换应用,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质,平面向量及应用
分析:(1)利用数量积运算、倍角公式、两角和差的正弦公式即可得出;
(2)利用三角函数的图象变换法则即可得出;
(3)利用正弦函数的单调性即可得出.
解答: 解:(1)f(x)=
OP
OQ
=(2cosx+1)cosx-cos2x+sinx-1
=sinx+cosx
=
2
sin(x+
π
4
)

其振幅为
2
,相位为x+
π
4
,初相为
π
4

(2)可由y=sinx图象横坐标不变,纵坐标伸长到原来的
2
倍,再把曲线上所有的点向左平移
π
4
个单位,即可得y=
2
sin(x+
π
4
)
的图象.
(3)
2
sin(α+
π
4
)>
2
2

sin(α+
π
4
)>
1
2

∵α∈(0,π),
α+
π
4
∈(
π
4
,  
4
)

α∈(0,  
12
)
点评:本题考查了数量积运算、倍角公式、两角和差的正弦公式、三角函数的图象变换法则、正弦函数的单调性,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x=
4
3
,y=
1
3
,求
x3
-
y3
x
-
y
-
x3
+
y3
x
+
y
=(  )
A、
1
3
B、1
C、
4
3
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
9
+
y2
25
=1上一动点P到两焦点距离之和为(  )
A、10B、8C、6D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx+12在点(1,f(1))处的切线方程为9x+y-10=0.
(Ⅰ)求a、b的值;
(Ⅱ)设函数f(x)在[0,m](m>0)上的最大值为g(m),求函数g(m)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(θ)=
cos(-θ-
π
2
)•sin(
2
+θ)
sin(2π-θ)

(1)化简g(θ);
(2)若g(
π
3
+θ)=
1
3
,θ∈(
π
6
6
),求g(
6
+θ)的值;
(3)若g(
3
2
π-θ)-g(θ)=
1
3
,θ∈(-
π
2
π
2
),求g(θ)-g(
π
2
-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了绿化城市,准备在如图所示的区域DFEBC内修建一个矩形PQRC的草坪,并建立如图平面直角坐标系,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m.
(1)求直线EF的方程;
(2)应如何设计才能使草坪的占地面积最大?并求最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=2x-x2,问方程f(x)=0在区间[-1,0]内是否有解,为什么?
(2)若方程ax2-x-1=0在(0,1)内恰有一解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)若函数f(x)在区间(2a-1,a+
1
4
)内有极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)e n-2+
2
n+1
(n∈N*,e为自然对数的底数,e≈2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
2
-y2
=1的两条渐近线方程分别为l1,l2,A,B分别为l1,l2上的两点,|AB|=
2
,且动点P满足
OP
=
OA
+
OB

(Ⅰ)求点P的轨迹方程C2
(Ⅱ)过点S(0,-
3
5
)且斜率为k的动直线l交曲线C2于E,F两点,在y轴上是否存在定点M,使以EF为直径的圆恒过这个点?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案