精英家教网 > 高中数学 > 题目详情
20.已知等差数列{an},前n项和为Sn,S6>S7>S5,下列结论其中正确的序号为:(1),(2),(4),(5)
(1)d<0;  (2)S11>0;  (3)S12<0; (4)S13<0; (5)S9>S3

分析 等差数列{an}中,由S6>S7>S5,可求得a6>0,a7<0,d<0,a1>0,|a6|>|a7|,从而可作出正确判断.

解答 解:∵S6>S7>S5
∴6a1+$\frac{6×5}{2}$d>7a1+$\frac{7×6}{2}$d>5a1+$\frac{5×4}{2}$d,
化为:a1+6d=a7<0,2a1+11d=a6+a7>0,
∴a6>0,a7<0,d<0,a1>0,|a6|>|a7|.
S11=$\frac{11}{2}$(a1+a11)=11a6>0
S12=12(a6+a7)>0,
S13=13a7<0,
S9-S3=a4+a5+a6+a7+a8+a9=3(a6+a7)>0,
故正确的答案为(1),(2),(4),(5)
故答案为:(1),(2),(4),(5)

点评 本题考查了等差数列的通项公式与求和公式及其性质、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽调查了500位老人,结果如表所示:
需要4030
不需要160270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(1)完成2×2列联表,并根据表中数据,问是否有99%的把握认为该地区的老年人是否需要志愿者帮助与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.△ABC的面积为$\frac{{3\sqrt{15}}}{4}$,$cosB=-\frac{1}{4}$,AC=4,则△ABC的周长为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对两个变量的相关系数r,有下列说法:(1)|r|越大,相关程度越大;(2)|r|越小,相关程度越大;(3)|r|趋近于0时,没有非线性相关系数;(4)|r|越接近于1时,线性相关程度越强,其中正确的是(1)、(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,若S13=-26,a9=4,求:
(1)数列{an}的通项公式;
(2)S8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.编号为1,2,3,4,5的5人,入座编号也为1,2,3,4,5的5个座位,至多有2人对号入座的坐法种数为(  )
A.120B.130C.90D.109

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.闭区间上函数极大值一定比极小值大
B.闭区间上函数最大值一定是极大值
C.若|p|<$\sqrt{6}$,则f(x)=x3+px2+2x+1无极值
D.函数f(x)在区间(a,b)上一定存在最值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为$4\sqrt{5}$,F1、F2为椭圆的两个焦点,P为椭圆上一点,△PF1F2的周长为$4\sqrt{5}+12$,则椭圆C的方程是$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,Sn+1=4an+2,a1=1.
(1)设bn=an+1-2an,求证数列{bn}是等比数列;
(2)设cn=$\frac{a_n}{2^n}$,求证数列{cn}是等差数列;
 (3)在(2)的条件下设dn=$\frac{1}{{c}_{n}•{c}_{n+1}}$,求{dn}的前n项和.

查看答案和解析>>

同步练习册答案