精英家教网 > 高中数学 > 题目详情
在△ABC中,A,B,C所对的边分别是a,b,c,满足3a2+3b2=c2+4ab,现设f(x)=tanx,则(  )
A、f(sinA)≤f(cosB)
B、f(sinA)≥f(cosB)
C、f(sinA)≤f(sinB)
D、f(cosA)≤f(cosB)
考点:余弦定理,正切函数的单调性
专题:三角函数的求值
分析:由已知条件和余弦定理可得得2-cosC=
a2+b2
ab
,由基本不等式可得cosC≤0,进而可得A,B均为锐角,且0<A+B≤
π
2
,由正弦函数和正切函数的单调性及诱导公式可得结论.
解答: 解:∵3a2+3b2=c2+4ab,∴c2=3a2+3b2-4ab,
又由余弦定理可得c2=a2+b2-2abcosC,
∴3a2+3b2-4ab=a2+b2-2abcosC,
化简可得2-cosC=
a2+b2
ab

由基本不等式可得
a2+b2
ab
2ab
ab
=2,当且仅当a=b时取等号,
∴2-cosC≥2,∴cosC≤0,∴C为钝角或直角,
∴A,B均为锐角,且0<A+B≤
π
2

∴A≤
π
2
-B,∴sinA≤sin(
π
2
-B)=cosB,
∵正切函数y=tanx在(-
π
2
π
2
)单调递增,
∴tan(sinA)≤tan(cosB),即f(sinA)≤f(cosB),
故选:A
点评:本题考查余弦定理,涉及基本不等式和正切函数的单调性,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=lnx+x3-9的零点所在的区间为(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是以F1,F2为左、右焦点的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)左支上一点,且满足
PF1
PF2
=0,tan∠PF2F1=
2
3
,则此双曲线的离心率为(  )
A、
3
B、
13
2
C、
5
D、
13

查看答案和解析>>

科目:高中数学 来源: 题型:

连续抛掷两枚正方体骰子(它们的六个面分别标有1,2,3,4,5,6),记所得朝上的面的点数分别为x,y,过坐标原点和点P(x,y)的直线的倾斜角为θ,则θ>60°的概率为(  )
A、
1
4
B、
3
4
C、
1
2
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2x-1)4(2x+1)6的展开式中含x4的系数为(  )
A、-32B、32
C、-92D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

点(a,b)在直线2x-y+3=0的右下方,则(  )
A、2a-b+3<0
B、2a-b+3>0
C、2a-b+3=0
D、以上都不成立

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的图象是一条开口向下的抛物线,且对任意x∈R,均有f(1-x)=f(1+x)   成立.下列不等式中正确的是(  )
A、f(
1
2
)>f(
3
2
B、f(-1)>f(2)
C、f(-1)<f(2)
D、f(0)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x>0
y>0
y≤-nx+3n
所表示的平面区域为Dn,记Dn内的格点(格点即横坐标和纵坐标均为整数的点)个数为f(n)(n∈N*
(1)求f(1),f(2)的值及f(n)的表达式;
(2)设Sn为数列{bn}的前n项的和,其中bn=2f(n),问是否存在正整数n,t,使
Sn-tbn
Sn+1-tbn+1
1
16
成立?若存在,求出正整数n,t;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,A、B、C三点满足
OC
=-
OA
+2
OB

(1)试用
AB
表示
AC

(2)已知A(1,cosx),B(1+sinx,cosx),x∈[0,
π
2
],f(x)=
OA
OC
-2(m2+1)|
AB
|的最小值为
1
2
,求实数m的值.

查看答案和解析>>

同步练习册答案