8£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©¾­¹ýµã£¨0£¬$\sqrt{3}$£©£¬ÀëÐÄÂÊΪ$\frac{1}{2}$£¬×óÓÒ½¹µã·Ö±ðΪF1£¨-c£¬0£©£¬F2£¨c£¬0£©
£¨I
¢ñ£©ÇóÍÖÔ²µÄ·½³Ì     
£¨¢ò£©ÈôÖ±Ïßl£ºy=-$\frac{1}{2}$x+mÓëÍÖÔ²½»ÓÚA£¬BÁ½µã£¬ÓëÒÔ$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÎªÖ±¾¶µÄÔ²½»ÓÚF1£¬F2Á½µã£¬ÇÒÂú×ãD£¬ÇóÖ±ÏßDF1¡ÍF1F2µÄ·½³Ì£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÍÖÔ²µÃ¶¨Ò壬ÀëÐÄÂʵö¨Ò壬¹¹Ôì·½³Ì×飬½âµÃ¼´¿É£»
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃF1F2Ϊֱ¾¶µÃÔ²µÄ·½³ÌΪx2+y2=1£¬µÃµ½Ô²Ðĵ½Ö±ÏßµÄlµÄ¾àÀëΪd£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½Çó³ö|AB|µÄ³¤£¬¼´¿ÉÇó³ömµÄÖµ£¬ÎÊÌâµÃÒÔ½â¾ö£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ$\left\{\begin{array}{l}{b=\sqrt{3}}\\{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃa=2£¬b=$\sqrt{3}$£¬c=1£¬
¡àÍÖÔ²µÃ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¬
£¨¢ò£©ÓÉÌâÒâ¿ÉµÃF1F2Ϊֱ¾¶µÃÔ²µÄ·½³ÌΪx2+y2=1£¬
¡àÔ²Ðĵ½Ö±ÏßµÄlµÄ¾àÀëΪd=$\frac{2|m|}{\sqrt{5}}$£¬
ÓÉd£¼1£¬¼´$\frac{2|m|}{\sqrt{5}}$£¼1£¬¿ÉµÃ|m|£¼$\frac{\sqrt{5}}{2}$£¬
¡à|CD|=2$\sqrt{1-{d}^{2}}$=2$\sqrt{1-\frac{4{m}^{2}}{5}}$=$\frac{2}{\sqrt{5}}$$\sqrt{5-4{m}^{2}}$£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{1}{2}x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬
ÕûÀíµÃx2-mx+m2-3=0£¬
¡àx1+x2=m£¬x1x2=m2-3£¬
¡à|AB|=$\sqrt{1+£¨-\frac{1}{2}£©^{2}}$$\sqrt{{m}^{2}-4£¨{m}^{2}-3£©}$$\frac{\sqrt{15}}{2}\sqrt{4-{m}^{2}}$
¡ß$\frac{|AB|}{|CD|}$=$\frac{5\sqrt{3}}{4}$£¬
¡à$\frac{\sqrt{4-{m}^{2}}}{\sqrt{5-4{m}^{2}}}$=1£¬
½âµÃm=¡À$\frac{\sqrt{3}}{3}$£¬ÇÒÂú×ã|m|£¼$\frac{\sqrt{5}}{2}$£¬
¡àÖ±ÏßlµÄ·½³ÌΪy=$-\frac{1}{2}$x+$\frac{\sqrt{3}}{3}$£¬»òy=-$\frac{1}{2}$x-$\frac{\sqrt{3}}{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÃ±ê×¼·½³Ì£¬ÏÒ³¤¹«Ê½£¬µãµ½Ö±Ïß¾àÀ빫ʽ£¬¿¼²éÁËѧÉúµÃת»¯ÄÜÁ¦£¬ÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{x}$-x+alnx£¨a¡ÊR£©£¨e=2.71828¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÉϲ»µ¥µ÷£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©É躯Êýf£¨x£©µÄÁ½¸ö¼«ÖµµãΪx1ºÍx2£¬¼Ç¹ýµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©µÄÖ±ÏßµÄбÂÊΪk£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃk$¡Ü\frac{2e}{{e}^{2}-1}$a-2£¿Èô´æÔÚ£¬Çó³öaµÄȡֵ¼¯ºÏ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=¦Ásinx+cosxµÄͼÏó¹ØÓÚx=$\frac{¦Ð}{8}$³ÉÖá¶Ô³ÆÍ¼ÐΣ¬ÔòʵÊý¦Á=$\frac{1}{tan\frac{3¦Ð}{8}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªA£¨6£¬8£©£¬¡ÏAOX=¦È£®½«OAÈÆOÄæÊ±ÕëÐýת$\frac{¦Ð}{2}$µÃOB£¬Èô¡ÏBOX=¦Á£¬Çó$\frac{si{n}^{2}¦Á+sin2¦Á}{co{s}^{2}¦Á+cos2¦Á}$µÄÖµ£®£¨»­Í¼£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®µ×Ãæ±ß³¤Îª2£¬¸ßΪ1µÄÕýÁùÀâ×¶µÄÈ«Ãæ»ýΪ12$+6\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®±ß³¤Îª3¡¢4¡¢5µÄÈý½ÇÐΣ¬ÈôÒÔ³¤Îª3µÄ±ßËùÔÚµÄÖ±ÏßΪÖáÐýתһÖÜËù³ÉµÄ¼¸ºÎÌåµÄ±íÃæ»ýΪ36¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¼¯ºÏS={P|P=£¨x1£¬x2£¬x3£©£¬xi¡Ê{0£¬1}£¬i=1£¬2£¬3}¶ÔÓÚA=£¨a1£¬a2£¬a3£©£¬B=£¨b1£¬b2£¬b3£©¡ÊS£¬¶¨ÒåAÓëBµÄ²îΪA-B=£¨|a1-b1|£¬|a2-b2|£¬|a3-b3|£©£¬¶¨ÒåAÓëBÖ®¼äµÄ¾àÀëΪd£¨A£¬B£©=$\sum_{i=1}^{3}$|ai-bi|£®¶ÔÓÚ?A£¬B£¬C¡ÊS£¬ÔòÏÂÁнáÂÛÖÐÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®d£¨A£¬C£©+d£¨B£¬C£©=d£¨A£¬B£©B£®d£¨A£¬C£©+d£¨B£¬C£©£¾d£¨A£¬B£©C£®d£¨A-C£¬B-C£©=d£¨A£¬B£©D£®d£¨A-C£¬B-C£©£¾d£¨A£¬B£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚµ×ÃæÊǾØÐεÄËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬PA=AB=2£¬BC=4£®EÊÇPDµÄÖе㣬
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæPDC¡ÍÆ½ÃæPAD£»
£¨¢ò£©ÇóÆ½ÃæEACÓëÆ½ÃæACD¼Ð½ÇµÄÓàÏÒÖµ£»
£¨¢ó£©ÇóBµãµ½Æ½ÃæEACµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=lnx-2x£®
£¨1£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ£»
£¨2£©µ±a£¾0ʱ£¬²»µÈʽf£¨x£©¡Ý-ax2+ax-2ÔÚx¡Ê[1£¬e]ÉϺã³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸