精英家教网 > 高中数学 > 题目详情
20.已知集合S={P|P=(x1,x2,x3),xi∈{0,1},i=1,2,3}对于A=(a1,a2,a3),B=(b1,b2,b3)∈S,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,|a3-b3|),定义A与B之间的距离为d(A,B)=$\sum_{i=1}^{3}$|ai-bi|.对于?A,B,C∈S,则下列结论中一定成立的是(  )
A.d(A,C)+d(B,C)=d(A,B)B.d(A,C)+d(B,C)>d(A,B)C.d(A-C,B-C)=d(A,B)D.d(A-C,B-C)>d(A,B)

分析 因为每个数位上都是0或者1,取差的绝对值仍然是0或者1,符合Sn的要求.然后是减去C的数位,不管减去的是0还是1,每一个a和每一个b都是同时减去的,因此不影响他们原先的差.

解答 解:设A=(a1,a2,a3),B=(b1,b2,b3),C=(c1,c2,c3)∈S
因ai,bi∈0,1,故|ai-bi|∈0,1,(i=1,2,3)a1b1∈0,1,
即A-B=(|a1-b1|,|a2-b2|,|a3-b3|)∈S
又ai,bi,ci∈(0,1),i=1,2,3
当ci=0时,有||ai-ci|-|bi-ci||=|ai-bi|;
当ci=1时,有||ai-ci|-|bi-ci||=|(1-ai)-(1-bi)=|ai-bi|,
故d(A-C,B-C)=d(A,B)成立.

点评 本题是综合考查集合、数列与推理综合的应用,这道题目的难点主要出现在读题上,需要仔细分析,以找出解题的突破点.题目所给的条件其实包含两个定义,第一个是关于Sn的,其实Sn中的元素就是一个n维的坐标,其中每个坐标值都是0或者1,也可以这样理解,就是一个n位数字的数组,每个数字都只能是0和1,第二个定义叫距离,距离定义在两者之间,如果直观理解就是看两个数组有多少位不同,因为只有0和1才能产生一个单位的距离,因此这个大题最核心的就是处理数组上的每一位数,然后将处理的结果综合起来,就能看到整体的性质了.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40间产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…(510,515],由此得到样本的频率分布直方图,如图所示.
(Ⅰ)根据频率分布直方图,求重量超过505克的产品数量;
(Ⅱ)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{(a-1){x}^{2}-2ax+b+2,x≤0}\\{(a-1)x+b+2,x>0}\end{array}\right.$,若不等式f(x)<0的解集为非空集合M,且M⊆(-1,2),则3a-b的取值范围为(  )
A.(5,+∞)B.[-1,+∞)C.(-∞,5)D.(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点(0,$\sqrt{3}$),离心率为$\frac{1}{2}$,左右焦点分别为F1(-c,0),F2(c,0)
(I
Ⅰ)求椭圆的方程     
(Ⅱ)若直线l:y=-$\frac{1}{2}$x+m与椭圆交于A,B两点,与以$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)为直径的圆交于F1,F2两点,且满足D,求直线DF1⊥F1F2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C的方程是x2+y2=1,点A(1,0),直线l与圆C相交于P、Q两点(不同于A),
(1)若∠PAQ=90°,则直线l必经过圆心O;
(2)若直线l经过圆心O,则∠PAQ=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1
(1)若过点(-2,0)的直线l与圆C1交于A,B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{8}{3}$,求直线l的方程;
(2)设动圆C同时平分圆C1的周长,圆C2的周长,
①证明动圆圆心C在一条直线上运动;
②动圆C是否过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在正方体ABCD-A1B1C1D1中,给出下列结论:①AC⊥B1D1;②AC1⊥B1C;③AB1与BC1所成的角为60°;④AB与A1C所成的角为45°.其中所有正确结论的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图:抛物线y2=4x的焦点为F,原点为O,直线AB经过点F,抛物线的准线与x轴交于点C,若∠OFA=135°,则tan∠ACB=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=eax-x,其中a∈R,e=2.71828…为自然对数的底数.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若f(x)≥0恒成立,求实数a的取值范围;
(Ⅲ)证明:n∈N*时,($\sqrt{e}$)n(n+1)≥(n!)e

查看答案和解析>>

同步练习册答案