精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{(a-1){x}^{2}-2ax+b+2,x≤0}\\{(a-1)x+b+2,x>0}\end{array}\right.$,若不等式f(x)<0的解集为非空集合M,且M⊆(-1,2),则3a-b的取值范围为(  )
A.(5,+∞)B.[-1,+∞)C.(-∞,5)D.(-1,5)

分析 利用已知条件,得到约束条件,然后利用线性规划求解即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{(a-1){x}^{2}-2ax+b+2,x≤0}\\{(a-1)x+b+2,x>0}\end{array}\right.$,若不等式f(x)<0的解集为非空集合M,且M⊆(-1,2),
可得:$\left\{\begin{array}{l}a-1>0\\ b+2<0\\ 2a+b>0\\ 3a+b+1>0\end{array}\right.$,
不等式组不是的可行域如图:z=3a-b经过可行域的A时,取得最小值,由$\left\{\begin{array}{l}a-1=0\\ b+2=0\end{array}\right.$可得A(1,-2),
3a-b的最小值为5,3a-b∈(5,+∞).
故选:A.

点评 本题考查分段函数,线性规划的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设⊙O:x2+y2=36,内切于椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>1,b>0),F1、F2分别是椭圆的左焦点、右焦点,点P在该椭圆上,且△PF1F2的周长为36.
(1)求椭圆的方程;
(2)若过点F2的直线l与⊙O相交于A,B两点,与椭圆相交于C、D两点,若|AB|=4$\sqrt{5}$,求|CD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知PA是圆O的切线,A为切点,割线PBC交圆O于B,C两点,D为BC中点.过点P,A,D的圆与圆O交于点E.
(1)证明:PE是圆O的切线;
(2)若PA=$\sqrt{3}$,PB=1,求圆O的半径r的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=αsinx+cosx的图象关于x=$\frac{π}{8}$成轴对称图形,则实数α=$\frac{1}{tan\frac{3π}{8}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式x-x2>0的解集是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,-1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知A(6,8),∠AOX=θ.将OA绕O逆时针旋转$\frac{π}{2}$得OB,若∠BOX=α,求$\frac{si{n}^{2}α+sin2α}{co{s}^{2}α+cos2α}$的值.(画图)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.底面边长为2,高为1的正六棱锥的全面积为12$+6\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合S={P|P=(x1,x2,x3),xi∈{0,1},i=1,2,3}对于A=(a1,a2,a3),B=(b1,b2,b3)∈S,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,|a3-b3|),定义A与B之间的距离为d(A,B)=$\sum_{i=1}^{3}$|ai-bi|.对于?A,B,C∈S,则下列结论中一定成立的是(  )
A.d(A,C)+d(B,C)=d(A,B)B.d(A,C)+d(B,C)>d(A,B)C.d(A-C,B-C)=d(A,B)D.d(A-C,B-C)>d(A,B)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且长轴长与短轴长之比为$\sqrt{2}$:1,点R(x0,y0)是椭圆上任意一点,从原点O引圆R:(x-x02+(y-y02=2(x02≠2)的两条切线分别交椭圆C于点M、N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求四边形OMRN面积的最大值.

查看答案和解析>>

同步练习册答案