13£®Ä³Ê³Æ·³§ÎªÁ˼ì²éÒ»Ìõ×Ô¶¯°ü×°Á÷Ë®ÏßµÄÉú²úÇé¿ö£¬Ëæ»ú³éÈ¡¸ÃÁ÷Ë®ÏßÉÏ40¼ä²úÆ·×÷ΪÑù±¾³Æ³öËüÃǵÄÖØÁ¿£¨µ¥Î»£º¿Ë£©£¬ÖØÁ¿µÄ·Ö×éÇø¼äΪ£¨490£¬495]£¬£¨495£¬500]£¬¡­£¨510£¬515]£¬Óɴ˵õ½Ñù±¾µÄƵÂÊ·Ö²¼Ö±·½Í¼£¬ÈçͼËùʾ£®
£¨¢ñ£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬ÇóÖØÁ¿³¬¹ý505¿ËµÄ²úÆ·ÊýÁ¿£»
£¨¢ò£©ÔÚÉÏÊö³éÈ¡µÄ40¼þ²úÆ·ÖÐÈÎÈ¡2¼þ£¬ÉèYÎªÖØÁ¿³¬¹ý505¿ËµÄ²úÆ·ÊýÁ¿£¬ÇóYµÄÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©ÖØÁ¿³¬¹ý505¿ËµÄ²úÆ·½áºÏƵÂÊ·Ö²¼Ö±·½Í¼¿ÉÖªÓÐÁ½¸ö²¿·Ö£¬Çó³öÁ½¾ØÐεÄÃæ»ý£¬¸ù¾ÝÖØÁ¿³¬¹ý505¿ËµÄ²úÆ·ÊýÁ¿µÈÓÚ¸ÃÆµÂʳËÒÔÑù±¾ÈÝÁ¿¼´¿É£»
£¨¢ò£©YµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£¬È»ºóÀûÓÃ×éºÏÊý·Ö±ðÇó³öËüÃǵĸÅÂÊ£¬Áгö·Ö²¼Áм´¿ÉÇóYµÄÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©ÖØÁ¿³¬¹ý505¿ËµÄ²úÆ·ÊýÁ¿ÊÇ40¡Á£¨0.05¡Á5+0.01¡Á5£©=12¼þ£»
£¨¢ò£©YµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£»
P£¨Y=0£©=$\frac{{C}_{28}^{2}}{{C}_{40}^{2}}$=$\frac{63}{130}$£¬P£¨Y=1£©=$\frac{{C}_{12}^{1}{C}_{28}^{1}}{{C}_{40}^{2}}$=$\frac{56}{130}$£¬P£¨Y=2£©=$\frac{{C}_{12}^{2}}{{C}_{40}^{2}}$=$\frac{11}{130}$£¬
YµÄ·Ö²¼ÁÐΪ£º

Y012
P$\frac{63}{130}$  $\frac{56}{130}$$\frac{11}{130}$
¡àEY=0¡Á$\frac{63}{130}$+1¡Á$\frac{56}{130}$+2¡Á$\frac{11}{130}$=$\frac{39}{65}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼£¬ÒÔ¼°×éºÏ¼°×éºÏÊý¹«Ê½µÄÓ¦Ó㬿¼²éÊýѧÆÚÍû£®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=2lnx+$\frac{1}{2}$£¨x-a£©2£¨aΪ³£Êý£©£¬µ±x=1ʱ£¬f£¨x£©È¡µÃ¼«Öµ£®
£¨1£©ÇóaµÄÖµ£¬²¢Ð´³öf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨2£©Èô¹ØÓÚxµÄ·½³Ìf£¨x£©=bÔÚ£¨0£¬3]ÉÏÓÐÇÒÖ»ÓÐÒ»½â£¬ÇóʵÊýbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Éè¡ÑO£ºx2+y2=36£¬ÄÚÇÐÓÚÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾1£¬b£¾0£©£¬F1¡¢F2·Ö±ðÊÇÍÖÔ²µÄ×󽹵㡢ÓÒ½¹µã£¬µãPÔÚ¸ÃÍÖÔ²ÉÏ£¬ÇÒ¡÷PF1F2µÄÖܳ¤Îª36£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Èô¹ýµãF2µÄÖ±ÏßlÓë¡ÑOÏཻÓÚA£¬BÁ½µã£¬ÓëÍÖÔ²ÏཻÓÚC¡¢DÁ½µã£¬Èô|AB|=4$\sqrt{5}$£¬Çó|CD|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{x}$-x+alnx£¨a¡ÊR£©£¨e=2.71828¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÉϲ»µ¥µ÷£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©É躯Êýf£¨x£©µÄÁ½¸ö¼«ÖµµãΪx1ºÍx2£¬¼Ç¹ýµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©µÄÖ±ÏßµÄбÂÊΪk£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃk$¡Ü\frac{2e}{{e}^{2}-1}$a-2£¿Èô´æÔÚ£¬Çó³öaµÄȡֵ¼¯ºÏ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬µãP£¨xP£¬yP£©ºÍµãQ£¨xQ£¬yQ£©Âú×ã$\left\{\begin{array}{l}{x_Q}={x_P}+{y_P}\;\\{y_Q}=-{x_P}+{y_P}\;\end{array}$°´´Ë¹æÔòÓɵãPµÃµ½µãQ£¬³ÆÎªÖ±½Ç×ø±êÆ½ÃæµÄÒ»¸ö¡°µã±ä»»¡±£®Ôڴ˱任Ï£¬Èô$\frac{{|\overrightarrow{OP}|}}{{|\overrightarrow{OQ}|}}$=m£¬ÏòÁ¿$\overrightarrow{OP}$Óë$\overrightarrow{OQ}$µÄ¼Ð½ÇΪ¦È£¬ÆäÖÐOÎª×ø±êÔ­µã£¬Ôòmsin¦ÈµÄֵΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªÃüÌâp£º?x¡ÊR£¬x2£¾0£¬ÃüÌâq£º?¦Á£¬¦Â¡ÊR£¬Ê¹tan£¨¦Á+¦Â£©=tan¦Á+tan¦Â£¬ÔòÏÂÁÐÃüÌâÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®p¡ÄqB£®p¡Å£¨©Vq£©C£®£¨©Vp£©¡ÄqD£®p¡Ä£¨©Vq£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªPAÊÇÔ²OµÄÇÐÏߣ¬AΪÇе㣬¸îÏßPBC½»Ô²OÓÚB£¬CÁ½µã£¬DΪBCÖе㣮¹ýµãP£¬A£¬DµÄÔ²ÓëÔ²O½»ÓÚµãE£®
£¨1£©Ö¤Ã÷£ºPEÊÇÔ²OµÄÇÐÏߣ»
£¨2£©ÈôPA=$\sqrt{3}$£¬PB=1£¬ÇóÔ²OµÄ°ë¾¶rµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=¦Ásinx+cosxµÄͼÏó¹ØÓÚx=$\frac{¦Ð}{8}$³ÉÖá¶Ô³ÆÍ¼ÐΣ¬ÔòʵÊý¦Á=$\frac{1}{tan\frac{3¦Ð}{8}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª¼¯ºÏS={P|P=£¨x1£¬x2£¬x3£©£¬xi¡Ê{0£¬1}£¬i=1£¬2£¬3}¶ÔÓÚA=£¨a1£¬a2£¬a3£©£¬B=£¨b1£¬b2£¬b3£©¡ÊS£¬¶¨ÒåAÓëBµÄ²îΪA-B=£¨|a1-b1|£¬|a2-b2|£¬|a3-b3|£©£¬¶¨ÒåAÓëBÖ®¼äµÄ¾àÀëΪd£¨A£¬B£©=$\sum_{i=1}^{3}$|ai-bi|£®¶ÔÓÚ?A£¬B£¬C¡ÊS£¬ÔòÏÂÁнáÂÛÖÐÒ»¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®d£¨A£¬C£©+d£¨B£¬C£©=d£¨A£¬B£©B£®d£¨A£¬C£©+d£¨B£¬C£©£¾d£¨A£¬B£©C£®d£¨A-C£¬B-C£©=d£¨A£¬B£©D£®d£¨A-C£¬B-C£©£¾d£¨A£¬B£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸