【题目】已知函数
,
.
(1)若
在
处的切线与直线
平行,求
的值及
的单调区间;
(2)当
时,求证:
在定义域内有且只有两个极值点.
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:
(1)顶点C的坐标;
(2)直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P不在直线l、m上,则“过点P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的( )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,点
在椭圆
上.
(1)求椭圆
的方程;
(2)若不经过点
的直线
与椭圆
相交于不同的两点
,且直线
与直线
的斜率之和为1,试判断直线
是否过定点.若过定点,请求出该定点;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各:城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在
省的发展情况,
省某调查机构从该省抽取了
个城市,分别收集和分析了网约车的
两项指标数
,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
|
|
|
|
|
|
|
|
|
|
|
|
经计算得:![]()
(1)试求
与
间的相关系数
,并利用
说明
与
是否具有较强的线性相关关系(若
,则线性相关程度很高,可用线性回归模型拟合);
(2)立
关于
的回归方程,并预测当
指标数为
时,
指标数的估计值.
附:相关公式:
,![]()
参考数据:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线
与曲线
满足以下两个条件:点
在曲线
上,直线
方程为
;曲线
在点
附近位于直线
的两侧,则称直线
在点
处“切过”曲线
.下列选项正确的是( )
A.直线
在点
处“切过”曲线![]()
B.直线
在点
处“切过”曲线![]()
C.直线
在点
处“切过”曲线![]()
D.直线
在点
处“切过”曲线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省积极响应教育部号召实行新课程改革,为了调查某校高三学生的物理考试成绩是否达到
级与学生性别是否有关,从该校高三学生中随机抽取了部分男女生的成绩得到如下列联表:
考试成绩达到 | 考试成绩未达到 | 总计 | |
男生 | 26 | 40 | |
女生 | 6 | ||
总计 | 70 |
(1)(ⅰ)将
列联表补充完整;
(ⅱ)据此列联表判断,能否有
的把握认为“物理考试成绩是否达到级与性别有关”?
(2)将频率视作概率,从该校高三年级任意抽取3名学生的成绩,求物理考试成绩达到
级的人数的分布列及期望.
附:![]()
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10..828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com