精英家教网 > 高中数学 > 题目详情
12.在长方体ABCD-A1B1C1D1中,E,F分别是AB,CD1的中点,AA1=AD=1,AB=2..
(1)求证:EF∥平面BCC1B1
(2))求证:平面CD1E⊥平面D1DE;
(3)求三棱锥F-D1DE的体积.

分析 (1)过F作FM∥C1D1交CC1于M,连结BM,推导出EBMF是平行四边形,从而EF∥BM,由此能证明EF∥平面BCC1B1
(2)推导出D1D⊥CE,CE⊥DE,从而CE⊥平面D1DE,由此能证明平面CD1E⊥平面D1DE.
(3)由${V}_{F-{D}_{1}DE}={V}_{E-{D}_{1}DF}$,能求出三棱锥F-D1DE的体积.

解答 证明:(1)过F作FM∥C1D1交CC1于M,连结BM,
∵F是CD1的中点,∴FM∥C1D1,FM=$\frac{1}{2}$C1D1,(2分)
又∵E是AB中点,∴BE∥C1D1,BE=$\frac{1}{2}$C1D1
∴BE∥FM,BE=FM,EBMF是平行四边形,∴EF∥BM
又BM在平面BCC1B1内,∴EF∥平面BCC1B1.(4分)
(2)∵D1D⊥平面ABCD,CE在平面ABCD内,∴D1D⊥CE
在矩形ABCD中,DE2=CE2=2,∴DE2+CE2=4=CD2,(6分)
∴△CED是直角三角形,∴CE⊥DE,∴CE⊥平面D1DE,
∵CE在平面CD1E内,∴平面CD1E⊥平面D1DE.(8分)
解:(3)三棱锥F-D1DE的体积:
${V}_{F-{D}_{1}DE}={V}_{E-{D}_{1}DF}$
=$\frac{1}{3}×{S}_{△{D}_{1}DF}×AD$
=$\frac{1}{3}×\frac{1}{2}×{D}_{1}D×\frac{1}{2}CD×AD$=$\frac{1}{6}$.(12分)

点评 本题考查线面平行的证明,考查面面垂直的证明,考查三棱锥的体积的求不地,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(a,b)=ax+by,如果1≤f(1,1)≤2,且-1≤f(1,-1)≤1,试求f(2,1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{2^x},(x<2)\\ f(x-2),\;\;(x≥2)\end{array}$,则f(5)的值为(  )
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,正方形边长是2,函数y=$\frac{1}{2x}$与正方形交于两点,向正方形内投飞镖,则飞镖落在阴影部分内的概率是$\frac{7-3ln2}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合M={x|x2-x-2<0},N={x|x≤k},若M?N,则k的取值范围是(  )
A.(-∞,2]B.[-1,+∞)C.(-1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若x,y满足条件$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥2\end{array}\right.$,则z=2x-y的最小值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:y1=3$\sqrt{2}$sin(100πt),y2=3sin(100πt-$\frac{π}{4}$),则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.6$\sqrt{2}$B.3+3$\sqrt{2}$C.3$\sqrt{2}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=Asin(ωx+φ),x∈R,(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)确定A,ω,φ的值,并写出函数f(x)的解析式;
(Ⅱ)描述函数y=f(x)的图象可由函数y=sinx的图象经过怎样的变换而得到;
(Ⅲ)若f($\frac{α}{2}$)=$\frac{10}{13}$($\frac{π}{3}$<α<$\frac{5π}{6}$),求tan2(α-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为(  )
A.$\frac{17}{6}$升B.$\frac{7}{2}$升C.$\frac{113}{66}$升D.$\frac{109}{33}$升

查看答案和解析>>

同步练习册答案