精英家教网 > 高中数学 > 题目详情
如图,在几何体ABC-A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,E为AB1中点,AB=AA1=BB1=2CC1
(Ⅰ)求证;CE∥平面A1B1C1
(Ⅱ)求证:平面AB1C1⊥平面A1BC.
考点:平面与平面垂直的判定,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)取A1B1中点F,连接EF,FC,证明CE∥平面A1B1C1,只需证明CE∥C1F;
(Ⅱ)证明BC⊥AB1,AB1⊥A1B,可得AB1⊥平面A1BC,即可证明平面AB1C1⊥平面A1BC.
解答: 证明:(Ⅰ)∵点A1,B1,C1在平面ABC内的正投影分别为A,B,C,
∴AA1∥BB1∥CC1
取A1B1中点F,连接EF,FC,则EF∥
1
2
A1A,EF=
1
2
A1A
∵AA1=4,CC1=2,∴CC1
1
2
A1A,CC1=
1
2
A1A,
∴CC1∥EF,CC1=EF,
∴四边形EFC1C为平行四边形,
∴CE∥C1F,
∵CE?平面A1B1C1,C1F?平面A1B1C1
∴CE∥平面A1B1C1
(Ⅱ)∵BB1⊥平面ABC,∴BB1⊥BC,
∵AB⊥BC,
∵AB∩BB1=B,
∴BC⊥平面AA1BB1
∵AB1?平面AA1BB1
∴BC⊥AB1
∵AA1=BB1=AB,AA1∥BB1
∴四边形AA1BB1为正方形,
∴AB1⊥A1B,
∵A1B∩BC=B,
∴AB1⊥平面A1BC,
∴平面AB1C1⊥平面A1BC.
点评:本题考查线面平行,面面垂直,考查学生分析解决问题的能力,掌握线面平行、面面垂直的判定定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
2x3+3x2 x≤0
ax
ex
,x>0
在[-2,2]上的最大值为1,则实数a的取值范围是(  )
A、[0,+∞)
B、[0,e]
C、(-∞,0]
D、(-∞,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

与60°角终边相同的角的集合可以表示为(  )
A、{α|α=k•360°+
π
3
,k∈Z}
B、{α|α=2kπ+60°,k∈Z}
C、{α|α=k•180°+60°,k∈Z}
D、{α|α=2kπ+
π
3
,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1中,M,N分别为AB,DC中点,则直线MC与D1N所成角的余弦值为(  )
A、
1
3
B、
1
5
C、-
1
5
D、-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

点M(x,y)到定点F1(2,0)的距离和它到定直线l:x=8的距离的比是常数
1
2

(1)求点M的轨迹C;
(2)求过F2(-2,0)且倾斜角为45°的直线被曲线C所截的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的正方体ABCD-A1B1C1D1中.
(Ⅰ)若M、N、P分别是C1C、B1C1、D1C1的中点,求证:平面MNP∥平面A1BD.
(Ⅱ)求直线BC1与平面ACC1A1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C的对边分别是a,b,c且满足(2a-c)cosB=bcosC,
(1)求角B的大小;
(2)若△ABC的面积为
3
3
4
b=
3
,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c成等比数列,
(1)若B是A和C的等差中项,求A;
(2)若b=1,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+a|x-1|+1(a∈R),求f(x)的最小值.

查看答案和解析>>

同步练习册答案