精英家教网 > 高中数学 > 题目详情
1.187,253的最大公约数是11.

分析 利用辗转相除法,可求出187,253的最大公约数.

解答 解:∵253=187×1+66,
187=66×2+55,
66=55×1+11,
55=11×5,
故253和187的最大公约数为11,
故答案为:11.

点评 本题考查的知识点是利用辗转相除法或更相减损法求两个数的最大公约数,握辗转相除法或更相减损法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.研究下列函数的连续性,并画出函数的图形.
(1)f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x≤1}\\{2-x,1<x≤2}\end{array}\right.$;
(2)f(x)=$\left\{\begin{array}{l}{x,-1≤x≤1}\\{1,x<-1或x>1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各式中x的值:
(1)log2(log4x)=0;
(2)log3(1gx)=1;
(3)log${\;}_{(\sqrt{2}-1)}$$\frac{1}{\sqrt{2}+1}$=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=-$\frac{\sqrt{3}}{2}$[1+sin($\frac{3π}{2}$-2x)]+$\frac{1}{2}$cos($\frac{3π}{2}$+2x),若f($\frac{α}{2}$)=$\frac{1}{4}$-$\frac{\sqrt{3}}{2}$,α∈($\frac{π}{3}$,π),求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{1-tanx}{1+tanx}$的单调递减区间是(kπ-$\frac{π}{2}$,kπ-$\frac{π}{4}$),(kπ-$\frac{π}{4}$,kπ+$\frac{π}{2}$).y=sin2(x-$\frac{π}{6}$)减区间(kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在Rt△ABC中,CD是斜边上的高线,AC:BC=3:1,则S△ABC:S△BCD为(  )
A.4:3B.9:1C.10:1D.10:9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条渐近线l的平行线交双曲线C于A,若以A为圆心,2a为半径的圆与l相切,则双曲线C的离心率e的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
品种甲403397390404388400412406
品种乙419403412418408423400413
(1)假设n=2,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线C:$\frac{{x}^{2}}{m+3}$-$\frac{{y}^{2}}{m}$=1(m>0)的渐近线方程为y=±$\frac{1}{2}$x,则双曲线C的焦距为(  )
A.1B.2$\sqrt{5}$C.3D.6

查看答案和解析>>

同步练习册答案