分析 由题意,利用已知条件,构造出所求表达式相关的柯西不等式,由柯西不等式求出其最小值.
解答 解:由题意,
因为x+y+z=1,
所以(x+y+z)2=1,
所以1=(x+y+z)2=($\frac{1}{\sqrt{2}}•\sqrt{2}$x+$\frac{1}{\sqrt{3}}•\sqrt{3}$y+1•z)2≤($\frac{1}{2}+\frac{1}{3}+1$)(2x2+3y2+z2)
所以F=2x2+3y2+z2≥$\frac{6}{11}$,当且仅当$\frac{\sqrt{2}x}{\frac{1}{\sqrt{2}}}=\frac{\sqrt{3}y}{\frac{1}{\sqrt{3}}}=\frac{z}{1}$且x+y+z=1,即x=$\frac{3}{11}$,y=$\frac{2}{11}$,z=$\frac{6}{11}$时,取“=”,
所以F的最小值为$\frac{6}{11}$.
点评 本题利用了柯西不等式,解题关键在于需要学生构造出柯西不等式的模型求解,也是本题的难点,在利用不等式时要特别注意取等条件.
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{π}{6}$,$\frac{π}{2}$) | B. | [$\frac{π}{3}$,$\frac{π}{2}$) | C. | (0,$\frac{π}{6}$] | D. | (0,$\frac{π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | q1,q3 | B. | q2,q3 | C. | q1,q4 | D. | q2,q4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
| 调查人数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com