精英家教网 > 高中数学 > 题目详情
11.在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=1,BC=2,E是PD的中点.(1)求证:平面PDC⊥平面PAD;
(2)求二面角E-AC-D的余弦值;
(3)求直线CP与平面AEC所成角的正弦值.

分析 (1)利用线面面面垂直的判定与性质定理、矩形的性质即可证明.
(2)以A为原点,AB、AD、AP所在直线为x、y、z轴,建立空间直角坐标系A-xyz.由PA⊥平面ACD,可取平面ACD法向量$\overrightarrow{{n}_{1}}$=$\overrightarrow{AP}$=(0,0,1),设平面ACE法向量$\overrightarrow{{n}_{2}}$=(x,y,z),利用$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{AE}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{AC}=0}\end{array}\right.$ 可得$\overrightarrow{{n}_{2}}$,利用$cos<\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}>$=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$即可得出.
(3)$\overrightarrow{CP}$=(-1,-2,1),设直线CP与平面AEC所成角为θ,利用sinθ=$|cos<\overrightarrow{{n}_{2}},\overrightarrow{CP}>|$=$\frac{|\overrightarrow{{n}_{2}}•\overrightarrow{CP}|}{|\overrightarrow{{n}_{2}}||\overrightarrow{CP}|}$即可得出.

解答 (1)证明:∵PA⊥平面ABCD,CD?平面ABCD,∴PA⊥CD
矩形ABCD,∴CD⊥DA,又PA∩DA=A,
∴CD⊥平面PAD,
CD?P平面PCD,
∴平面PDC⊥平面PAD.
(2)解:以A为原点,AB、AD、AP所在直线为x、y、z轴,建立空间直角坐标系A-xyz,P(0,0,1),D(0,2,0),
C(1,2,0),E$(0,1,\frac{1}{2})$,
∵PA⊥平面ACD,∴平面ACD法向量$\overrightarrow{{n}_{1}}$=$\overrightarrow{AP}$=(0,0,1),设平面ACE法向量$\overrightarrow{{n}_{2}}$=(x,y,z),
  由$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{AE}=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{AC}=0}\end{array}\right.$  则y+$\frac{1}{2}z$=0,x+2y=0,取$\overrightarrow{{n}_{2}}$=(2,-1,2),
∴$cos<\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}>$=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{2}{1×3}$=$\frac{2}{3}$,
∴二面角E-AC-D的余弦值为$\frac{2}{3}$.
(3)解:$\overrightarrow{CP}$=(-1,-2,1),设直线CP与平面AEC所成角为θ,sinθ=$|cos<\overrightarrow{{n}_{2}},\overrightarrow{CP}>|$=$\frac{|\overrightarrow{{n}_{2}}•\overrightarrow{CP}|}{|\overrightarrow{{n}_{2}}||\overrightarrow{CP}|}$=$\frac{\sqrt{6}}{9}$.

点评 本题考查了空间角与空间位置关系、法向量的性质及其应用、矩形的性质,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知p:x≤1,q:$\frac{1}{x}$<1,则¬p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sin2x+cosx在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上的最小值是(  )
A.$\frac{\sqrt{2}-1}{2}$B.-$\frac{\sqrt{2}+1}{2}$C.-1D.$\frac{1-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知sin(α+$\frac{π}{12}$)=$\frac{1}{3}$,则cos(α+$\frac{7π}{12}$)的值(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若公差不为零的等差数列{an}中,a4=10且a3,a6,a10成等比数列.
(I)求数列{an}的通项公式;
(Ⅱ)求数列{an}的前10项和S10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题P:方程x2+mx+1=0有两个不等的实数根,命题q:方程4x2+4(m-2)x+1=0无实数根.若p∧q为假,若p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果cos(π-A)=-$\frac{1}{2}$,那么sin($\frac{π}{2}$+A)的值是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若z=$\frac{1+i}{i}$,则$\overline{z}$=(  )
A.1+iB.1-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$\frac{1}{1+\root{4}{3}}$+$\frac{1}{1-\root{4}{3}}$+$\frac{2}{1+\sqrt{3}}$的值是(  )
A.1B.-1C.2D.-2

查看答案和解析>>

同步练习册答案