精英家教网 > 高中数学 > 题目详情
4.若正数x,y满足x+3y=xy,则3x+4y的最小值是25.

分析 正数x,y满足x+3y=xy,可得$\frac{1}{y}$+$\frac{3}{x}$=1.可得:3x+4y=(3x+4y)$(\frac{1}{y}+\frac{3}{x})$,展开利用基本不等式的性质即可得出.

解答 解:∵正数x,y满足x+3y=xy,∴$\frac{1}{y}$+$\frac{3}{x}$=1.
则3x+4y=(3x+4y)$(\frac{1}{y}+\frac{3}{x})$=13+$\frac{3x}{y}$+$\frac{12y}{x}$≥13+3×2$\sqrt{\frac{x}{y}×\frac{4y}{x}}$=25,当且仅当x=2y=5时取等号.
故答案为:25.

点评 本题考查了基本不等式的性质,考查了变形推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则z=x+2y取得最大值的最优解为A(a,b),点A在直线2mx+ny=2上,则m2+n2的最小值为(  )
A.4B.$\frac{9}{2}$C.5D.$\frac{11}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正三棱柱底面边长是2,外接球的表面积是16π,则该三棱柱的体积为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4$\sqrt{2}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.长方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为$\frac{5\sqrt{3}}{9}$,且四边形ABB1A1为正方形,则球O的直径为4或$\sqrt{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,设定点A(a,a)(a>0),P是函数y=$\frac{1}{x}$(x>0)图象上一动点,若点P,A之间的最短距离为2$\sqrt{2}$,则满足条件的正实数a的值为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.由①正方形的对角线互相垂直;②菱形的对角线互相垂直;③正方形是菱形,写出一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为(  )
A.②①③B.③①②C.①②③D.②③①

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=1,P为△ABC内一点,∠BPA=150°,则$\frac{PA}{PC}$的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=6x-x6,x∈R.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,求曲线在点P处的切线方程;
(Ⅲ)若方程f(x)=a(a为实数)有两个实数根x1,x2且x1<x2,求证:x2-x1≤6${\;}^{\frac{1}{5}}$-$\frac{a}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\vec a$=(2,-1,3),$\vec b$=(-4,2,x),$\vec c$=(1,-x,2),若($\vec a$+$\vec b$)⊥$\vec c$,则实数x的值为-4.

查看答案和解析>>

同步练习册答案