精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,正三角形所在平面与菱形所在的平面垂直, 平面,且.

(1)判断直线平面的位置关系,并说明理由;

(2)若,求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)过点于点,连接,通过计算可得,可进一步得,可得线面平行;(2)以为坐标原点, 所在直线分别为轴, 轴, 轴建立如图所示的空间直角坐标系.利用二面角的法向量与半平面的法向量的关系求得二面角的余弦值.

试题解析:(1)直线与平面平行,理由如下:

如图,过点于点,连接,因为在正三角形中, ,所以

因为平面平面平面,平面平面.

(2)如图,连接,由(1)可得的中点,又,故为等边三角形,

所以.

平面,故两两垂直,以为坐标原点, 所在直线分别为轴, 轴, 轴建立如图所示的空间直角坐标系.

,

所以

设平面的法向量为,则,即

,则是平面的一个法向量,

设平面的法向量为

,即

,得是平面的一个法向量.

所以

由图可知二面角为钝角,故二面角的余弦值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,0)时f(x)=( x , 则 f(log28)等于(
A.3
B.
C.﹣2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,过抛物线C:y2=2px(p>0)的焦点F作直线交C于A、B两点,过A、B分别向C的准线l作垂线,垂足为A′,B′,已知四边形AA′B′F与BB′A′F的面积分别为15和7,则△A′B′F的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点,求证:MN∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式(a﹣2)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a取值的集合(
A.{a|a≤2}
B.{a|﹣2<a<2}
C.{a|﹣2<a≤2}
D.{a|a≤﹣2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 f(x)= 在[﹣2,3]上的最大值为2,则实数a的取值范围是(
A.[ ln2,+∞ )
B.[0, ln2]
C.(﹣∞,0]
D.(﹣∞, ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)如图,曲线由上半椭圆和部分抛物线 连接而成, 的公共点为,其中的离心率为.

)求的值;

)过点的直线分别交于(均异于点),若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直于直线x﹣2y﹣1=0.求:
(Ⅰ)直线l的方程;
(Ⅱ)直线l与两坐标轴围成的三角形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y2=8x与双曲线C2 (a>0,b>0)有公共焦点F2 , 点A是曲线C1 , C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以双曲线C2的另一焦点F1为圆心的圆M与直线y= 相切,圆N:(x﹣2)2+y2=1.过点P(1, )作互相垂直且分别与圆M、圆N相交的直线l1和l2 , 设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t,问: 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案