精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx的最小正周期T=π
(1)求出ω的值;
(2)求f(x)得单调区间.

分析 (1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性求得ω的值.
(2)根据f(x)的解析式,利用正弦函数的单调性,求得f(x)的单调区间.

解答 解:(1)∵函数f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx=2sinωx•(-$\frac{\sqrt{3}}{2}$)-2cosωx•$\frac{1}{2}$+2$\sqrt{3}$sinωx
=$\sqrt{3}$sinωx-cosωx=2sin(ωx-$\frac{π}{6}$) 的最小正周期T=|$\frac{2π}{ω}$|=π,∴ω=±2.
(2)①当ω=2时,f(x)=2sin(2x-$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2x+$\frac{π}{2}$,求得kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,
可得函数的增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.
同理,令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2x+$\frac{3π}{2}$,求得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,可得函数的减区间为[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$],k∈Z.
②当ω=-2,f(x)=2sin(-2x-$\frac{π}{6}$)=-2sin(2x+$\frac{π}{6}$),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2x+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得函数的减区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
同理,令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2x+$\frac{3π}{2}$,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,可得函数的增区间为[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.

点评 本题主要考查三角恒等变换,正弦函数的周期性、单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)=ax2+bx,g(x)=2x-1.
(1)当a=1时,若函数f(x)的图象恒在函数g(x)的图象上方,试求实数b 的取值范围;
(2)若y=f(x)对任意的x∈R均有f(x-2)=f(-x)成立,且f(x)的图象经过  点A(1,$\frac{2}{3}$).
①求函数y=f(x)的解析式;
②若对任意x<-3,都有2k$\frac{f(x)}{x}$<g(x)成立,试求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|$\frac{x-5}{x+1}$<0,x∈R},B={x|x2-2x-m<0,x∈R}
(1)当m=3时,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-0.96)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}+{[{(-\root{3}{2})^{-4}}]^{-\frac{3}{4}}}$
(2)已知14a=6,14b=7,用a,b表示log4256.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,$SD=\sqrt{3}AD$.
(1)求多面体ABCDS的体积;
(2)求二面角A-SB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各式的值:
(1)2log510+log50.25;
(2)${({\frac{8}{125}})^{-\frac{1}{3}}}-{({-\frac{3}{5}})^0}+{16^{0.75}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出以下四个命题:①若a>b,则$\frac{1}{a}$<$\frac{1}{b}$;②若ac2>bc2,则a>b③若a>|b|,则a>b;④若a>b,则a2>b2.其中正确的是(  )
A.②④B.①③C.①②D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB与△PAD都是等边三角形,平面ABCD⊥平面PBD.
(I)证明:CD⊥平面PBD;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若$f(a)≥f(\frac{1}{3})$,则a的取值范围是(  )
A.$a≥\frac{1}{3}$B.$a≤-\frac{1}{3}$C.$-\frac{1}{3}≤a≤\frac{1}{3}$D.$a≥\frac{1}{3}$或$a≤-\frac{1}{3}$

查看答案和解析>>

同步练习册答案