精英家教网 > 高中数学 > 题目详情
已知A(-2,0),B(2,0),动点P与A、B两点连线的斜率分别为,且满足·="t" (t≠0且t≠-1).
(1)求动点P的轨迹C的方程;
(2)当t<0时,曲线C的两焦点为F1,F2,若曲线C上存在点Q使得∠F1QF2=120O
求t的取值范围.
(1)+=1(x≠2)
(2)
(1)设点P坐标为(x,y),依题意得=ty2=t(x2-4)+=1
轨迹C的方程为+=1(x≠2).
(2)当-1<t<0时,曲线C为焦点在x轴上的椭圆,
=r1= r2, 则r1+ r2=2a=4.
在△F1PF2中,=2c=4,
∵∠F1PF2=120°,由余弦定理,
得4c2=r+r-2r1r2= r+r+ r1r2
= (r1+r2)2-r1r2≥(r1+r2)2-()2=3a2, ∴16(1+t)≥12, ∴t≥-.
所以当-≤t<0时,曲线上存在点Q使∠F1QF2=120°
当t<-1时,曲线C为焦点在y轴上的椭圆,
=r1= r2,则r1+r2=2a=-4 t,
在△F1PF2中,=2c=4.
∵∠F1PF2=120O,由余弦定理,
得4c2=r+r-2r1r2= r+r+ r1r2
= (r1+r2)2-r1r2≥(r1+r2)2-()2=3a2, ∴16(-1-t)≥-12tt≤-4.
所以当t≤-4时,曲线上存在点Q使∠F1QF2=120O
综上知当t<0时,曲线上存在点Q使∠AQB=120O的t的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题8分,第(3)小题6分)
已知双曲线的一个焦点是,且
(1)求双曲线的方程;
(2)设经过焦点的直线的一个法向量为,当直线与双曲线的右支相交于不同的两点时,求实数的取值范围;并证明中点在曲线上.
(3)设(2)中直线与双曲线的右支相交于两点,问是否存在实数,使得为锐角?若存在,请求出的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程的图像只可能是下图中( *** )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设A、B分别是轴,轴上的动点,P在直线AB上,且
(1)求点P的轨迹E的方程;
(2)已知E上定点K(-2,0)及动点M、N满足,试证:直线MN必过轴上的定点。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知定点A(0,1),B(0,-1),C(1,0).动点P满足:.
(I)求动点P的轨迹方程,并说明方程表示的曲线类型;
(II)当时,求的最大、最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知曲线C上任意一点M到点F(0,1)的距离比它到直线 的距离小1.
(1)求曲线C的方程;
(2)过点当△AOB的面积为时(O为坐标原点),求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,有公共左顶点和公共左焦点的椭圆Ⅰ与Ⅱ的长半轴的长分别为,半焦距分别为,则下列结论不正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线和圆交于两点,则的中点坐
标为(   )
                        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从极点作圆,则各弦中点的轨迹方程为__________.

查看答案和解析>>

同步练习册答案