分析 (Ⅰ)利用零点分段,即可用分段函数的形式表示该函数;
(Ⅱ)根据(Ⅰ)中函数的图象,我们可以分析出自变量,函数值的取值范围,从而得到定义域和值域,分析出从左到右函数图象上升和下降的区间,即可得到函数的单调区间.
解答 解:(Ⅰ)$f(x)=\left\{\begin{array}{l}2x+1,x≥-\frac{1}{2}\\-2x-1,x<-\frac{1}{2}\end{array}\right.$…(4分)
(Ⅱ)图象如图所示…(6分)![]()
定义域:R,值域:[0,+∞),递增区间:$[-\frac{1}{2},+∞)$,递减区间:$(-∞,-\frac{1}{2}]$…(12分)
点评 本题考查的知识点是分段函数的解析式求法及其图象的作法,函数的定义域及其求法,函数的值域,函数的图象,其中利用零点分段法求出函数的解析式是解答本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com