精英家教网 > 高中数学 > 题目详情
3.已知曲线${C_n}:y=n{x^2}$,点Pn(xn,yn)(xn>0,yn>0)是曲线Cn上的点(n=1,2,…),曲线Cn在点Pn处的切线是ln,ln与y轴相交于点Qn.若原点O(0,0)到切线ln的距离与线段PnQn的长度之比取得最大值,则点Pn的坐标为$(\frac{1}{2n},\frac{1}{4n})$.

分析 求导,令x=xn,求得点P的切线方程2nxn•x-n•${x}_{n}^{2}$=0,利用点到直线的距离公式求得原点O(0,0)到切线ln的距离d=$\frac{丨-n{x}_{n}^{2}丨}{\sqrt{(2n{x}_{n})^{2}+1}}$=$\frac{n{x}_{n}^{2}}{\sqrt{4{n}^{2}{x}_{n}^{2}+1}}$,丨PnQn丨=$\sqrt{{x}_{n}^{2}+(2n{x}_{n}^{2})^{2}}$,$\frac{d}{丨{P}_{n}{Q}_{n}丨}$=$\frac{n丨{x}_{n}丨}{1+4{n}^{2}{x}_{n}^{2}}$≤$\frac{n丨{x}_{n}丨}{2•1•丨2n{x}_{n}丨}$=$\frac{1}{4}$,即可求得点Pn的坐标.

解答 解:由y=nx2,求导,y′=2nx,
∴y′${丨}_{x={x}_{n}}$=2nxn
∴切线ln的方程为y-n•${x}_{n}^{2}$=2nxn(x-xn),即2nxn•x-n•${x}_{n}^{2}$=0,
令x=0,得y=-n${x}_{n}^{2}$,
∴点Qn坐标为(0,-n•${x}_{n}^{2}$);
原点O(0,0)到切线ln的距离d=$\frac{丨-n{x}_{n}^{2}丨}{\sqrt{(2n{x}_{n})^{2}+1}}$=$\frac{n{x}_{n}^{2}}{\sqrt{4{n}^{2}{x}_{n}^{2}+1}}$,
丨PnQn丨=$\sqrt{{x}_{n}^{2}+(2n{x}_{n}^{2})^{2}}$,
∴$\frac{d}{丨{P}_{n}{Q}_{n}丨}$=$\frac{n丨{x}_{n}丨}{1+4{n}^{2}{x}_{n}^{2}}$≤$\frac{n丨{x}_{n}丨}{2•1•丨2n{x}_{n}丨}$=$\frac{1}{4}$,
当且仅当1=4n2${x}_{n}^{2}$,即${x}_{n}^{2}$=$\frac{1}{4{n}^{2}}$(xn>0)时,等号成立,
此时xn=$\frac{1}{2n}$,
∴点Pn的坐标为$(\frac{1}{2n},\frac{1}{4n})$.
故答案为:$(\frac{1}{2n},\frac{1}{4n})$.

点评 本题考查导数的运算,考查利用导数求点的切线方程,点到直线的距离公式,两点之间的距离公式及基本不等式的综合应用,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,2x+$\frac{1}{2^x}$>2;命题$q:?x∈[0,\frac{π}{2}]$,使sinx+cosx=$\frac{1}{2}$,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系中,O是坐标原点,抛物线E的方程为y2=4x.M(1,-3),N(5,1),直线MN与抛物线相交于A,B两点,求∠AOB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明下列命题:
(1)若实数a≥2,则$\sqrt{a+1}-\sqrt{a}<\sqrt{a-1}-\sqrt{a-2}$;
(2)若a,b为两个不相等的正数,且a+b=1,则$\frac{1}{a}+\frac{1}{b}>4$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若关于x的方程x3-3x-m=0在[0,2]上有根,则实数m的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若由一个2×2 列联表中的数据计算得K2的观测值k≈4.013,那么在犯错的概率不超过0.05的前提下,认为两个变量之间有关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知tanx=2,求下列各式的值:
(1)$\frac{4sinx-2cosx}{3cosx+3sinx}$;
(2)$\frac{2}{3}$sin2x+$\frac{1}{4}$cos2x;
(3)sinxcosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.过点P(1,1)与双曲线x2-y2=1有且只有一个交点的直线条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.$\sqrt{13}$B.$\sqrt{15}$C.$\sqrt{19}$D.$\sqrt{37}$

查看答案和解析>>

同步练习册答案