精英家教网 > 高中数学 > 题目详情
13.已知命题p:?x∈R,2x+$\frac{1}{2^x}$>2;命题$q:?x∈[0,\frac{π}{2}]$,使sinx+cosx=$\frac{1}{2}$,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

分析 判断原命题的真假,然后判断选项的正误.

解答 解:因为命题p为假命题,命题q为假命题,所以?p∧?q为真命题,
故选:D.

点评 本题考查命题的真假的判断,四种命题的逆否关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.执行如图的程序框图,若输入x=-2016,则输出的结果为(  )
A.2015B.2016C.2116D.2048

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y-5≤0}\\{x-y-2≤0}\\{x≥0}\end{array}\right.$,则z=|2x+3y-2|的取值范围是(  )
A.[7,8]B.[0,8]C.[$\frac{11}{2}$,8]D.[$\frac{11}{2}$,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:y=k(x+2),曲线$Γ:\sqrt{1-{{(x-1)}^2}}-y=0$,则当k∈[-1,1],直线l与曲线Γ有两个交点的概率为(  )
A.$\frac{{\sqrt{2}}}{8}$B.$\frac{{\sqrt{2}}}{6}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程为(x-2-2$\sqrt{10}$)2+(y-4)2=16或(x-2+2$\sqrt{10}$)2+(y-4)2=16或(x-2-2$\sqrt{6}$)2+(y+4)2=16或(x-2+2$\sqrt{6}$)2+(y+4)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.5人排成一排照相,其中甲乙必须相邻的排法种数有(  )
A.72B.60C.48D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin(2x-$\frac{π}{3}$).
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的最大值和最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是棱长为a正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC中点,AC与BD交于O点.
(1)求证:BC⊥平面PCD;
(2)求点C到平面BED的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知曲线${C_n}:y=n{x^2}$,点Pn(xn,yn)(xn>0,yn>0)是曲线Cn上的点(n=1,2,…),曲线Cn在点Pn处的切线是ln,ln与y轴相交于点Qn.若原点O(0,0)到切线ln的距离与线段PnQn的长度之比取得最大值,则点Pn的坐标为$(\frac{1}{2n},\frac{1}{4n})$.

查看答案和解析>>

同步练习册答案