精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知平行于轴的动直线交抛物线于点,点的焦点.圆心不在轴上的圆与直线轴都相切,设的轨迹为曲线

⑴求曲线的方程;

⑵若直线与曲线相切于点,过且垂直于的直线为,直线分别与轴相交于点.当线段的长度最小时,求的值.

【答案】(1) (2)

【解析】试题分析:(1)的方程为 ;(2)所以当时,取得极小值也是最小值,即取得最小值,此时

试题解析:

(1)因为抛物线的方程为,所以的坐标为

,因为圆轴、直线都相切,平行于轴,

所以圆的半径为

则直线的方程为,即

所以,又

所以,即

所以的方程为

(2)设

由(1)知,点处的切线的斜率存在,由对称性不妨设

所以

所以当时,取得极小值也是最小值,即取得最小值

此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题在区间上是减函数;

命题q:不等式无解。

若命题“”为真,命题“”为假,求实数m 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程是,点是曲线上的动点.点满足 (为极点).设点的轨迹为曲线.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,已知直线的参数方程是,(为参数).

(1)求曲线的直角坐标方程与直线的普通方程;

(2)设直线交两坐标轴于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两个非零平面向量则有

①若

②若

③若则存在实数使得

④若存在实数使得四个命题中真命题的序号为 __________.(填写所有真命题的序号)

【答案】①③④

【解析】逐一考查所给的结论:

①若,则,据此有:,说法①正确;

②若,则

,说法②错误;

③若,则,据此有:

由平面向量数量积的定义有:

则向量反向,故存在实数,使得,说法③正确;

④若存在实数,使得,则向量与向量共线,

此时

若题中所给的命题正确,则

该结论明显成立.即说法④正确;

综上可得:真命题的序号为①③④.

点睛:处理两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.

型】填空
束】
17

【题目】已知在.

(1)求角的大小

(2)设数列满足项和为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数和奇函数,且.

(1)求函数的解析式;

(2)设函数,记 .探究是否存在正整数,使得对任意的,不等式恒成立?若存在,求出所有满足条件的正整数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为,对任意都有,当时,.

1)求

2)证明:上单调递减;

3)解不等式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①若函数在区间上单调递增,则

②若),则的取值范围是

③若函数,则对任意的,都有

④若),在区间上单调递减,则.

其中所有正确命题的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,则下列结论正确的是 ( )

A. 向左平移个单位长度,得到的曲线关于原点对称

B. 向右平移个单位长度,得到的曲线关于轴对称

C. 向左平移个单位长度,得到的曲线关于原点对称

D. 向右平移个单位长度,得到的曲线关于轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数为偶函数,求实数的值;

2)若,求函数的单调递减区间;

3)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案