精英家教网 > 高中数学 > 题目详情
16.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}x=2\sqrt{2}cosα\\ y=2sinα\end{array}\right.(α∈R,α$为参数),曲线C2的极坐标方程为$ρcosθ-\sqrt{2}ρsinθ-5=0$.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,Q曲线C2上一点,求|PQ|的最小值.

分析 (1)由$\left\{\begin{array}{l}x=2\sqrt{2}cosα\\ y=2sinα\end{array}\right.$消去参数α,得曲线C1的普通方程,利用极坐标与直角坐标的互化方法,得到曲线C2的直角坐标方程;
(2)设P(2$\sqrt{2}$cosα,2sinα),利用点到直线的距离公式,即可求|PQ|的最小值.

解答 解:(1)由$\left\{\begin{array}{l}x=2\sqrt{2}cosα\\ y=2sinα\end{array}\right.$消去参数α,得曲线C1的普通方程为$\frac{x^2}{8}+\frac{y^2}{4}=1$.
由$ρcosθ-\sqrt{2}ρsinθ-5=θ$得,曲线C2的直角坐标方程为$x-\sqrt{2}y-5=0$.
(2)设P(2$\sqrt{2}$cosα,2sinα),则
点P到曲线C2的距离为$d=\frac{{|{2\sqrt{2}cosα-2\sqrt{2}sinα-5}|}}{{\sqrt{1+2}}}=\frac{{|{4cos({α+\frac{π}{4}})-5}|}}{{\sqrt{3}}}=\frac{{5-4cos({α+\frac{π}{4}})}}{{\sqrt{3}}}$.
当$cos({α+\frac{π}{4}})=1$时,d有最小值$\frac{{\sqrt{3}}}{3}$,所以|PQ|的最小值为$\frac{{\sqrt{3}}}{3}$.

点评 本题考查参数方程、极坐标方程与直角坐标方程的互化,考查点到直线距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知某几何体的三视图如图所示,则该几何体的外接球表面积为8π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=lnx-$\frac{1}{2}{x^2}$-x+5的单调递增区间为$({0,\frac{{-1+\sqrt{5}}}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x+ax2+bcosx函数在点$({\frac{π}{2},f({\frac{π}{2}})})$处的切线为y=$\frac{3π}{4}$.
(1)求函数a,b的值,并求出f(x)在[0,π]上的单调区间;
(2)若f(x1)=f(x2),且0<x1<x2<π,求证:$f'({\frac{{{x_1}+{x_2}}}{2}})<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{m}{x}+lnx$,g(x)=x3+x2-x.
(Ⅰ)若m=3,求f(x)的极值;
(Ⅱ)若对于任意的s,$t∈[{\frac{1}{2}\;,\;\;2}]$,都有$f(s)≥\frac{1}{10}g(t)$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$cos\frac{4π}{5}cos\frac{7π}{15}+sin\frac{4π}{5}sin\frac{7π}{15}$=$\frac{2}{3}+cos(\frac{π}{2}+x)cosx$则sin2x等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{1}{12}$D.-$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,且2acosB=3ccosA-2bcosA.
(1)若b=$\sqrt{5}$sinB,求a;
(2)若a=$\sqrt{6}$,△ABC的面积为$\frac{\sqrt{5}}{2}$,求b+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为推行“新课堂”教学法,某化学老师分别用原传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图.记成绩不低于70分者为“成绩优良”.
分数[50,59)[60,69)[70,79)[80,89)[90,100)
甲班频数56441
乙班频数13655
(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成
绩优良与教学方式有关”?
 甲班乙班总计
成绩优良   
成绩不优良   
总计   
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
独立性检验临界表
P(K2≥0)0.100.050.0250.010
K02.7063.8415.0246.635
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法来抽取8人进行考核,在这8 人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2sinxcosx+cos2x,则下列说法正确的是(  )
A.f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$的图象
B.若f(x1)=f(x2),则x1-x2=kπ,k∈Z
C.f(x)的图象关于直线$x=\frac{5}{8}π$对称
D.f(x)的图象关于点$(-\frac{3}{8}π,0)$对称

查看答案和解析>>

同步练习册答案