精英家教网 > 高中数学 > 题目详情
7.函数f(x)=lnx-$\frac{1}{2}{x^2}$-x+5的单调递增区间为$({0,\frac{{-1+\sqrt{5}}}{2}})$.

分析 先求函数的定义域,再求导数,令导数大于0,解得x的范围即为函数的单调增区间.

解答 解:函数f(x)=lnx-$\frac{1}{2}{x^2}$-x+5的定义域为(0,+∞)
对函数f(x)=lnx-$\frac{1}{2}{x^2}$-x+5求导,得f′(x)=-x-1+$\frac{1}{x}$,
令f′(x)>0,∵x>0,∴$\frac{-{x}^{2}-x+1}{x}$>0,得-x2-x+1>0,解得,0<x<$\frac{-1+\sqrt{5}}{2}$
∴函数的单调增区间为(0,$\frac{-1+\sqrt{5}}{2}$)
故答案为:$({0,\frac{{-1+\sqrt{5}}}{2}})$.

点评 本题主要考查利用导数求函数的单调区间,易错点是忘记求函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A,B,C的对边分别为a,b,c,若a=4,sinA=2sinB,则b=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,已知点A(-3,-4),B(6,3),直线l:x+my+1=0.
(1)求AB的中垂线方程;
(2)若点A与点B到直线l的距离相等,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,棱长为2的正方体ABCD-A1B1C1D1中,P为A1B1的中点
(1)求证:B1C1∥平面A1BC;
(2)求三棱锥A1-BPC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{10}{3}$B.$\frac{16}{3}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知两向量$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=12,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.记max{m,n}表示m,n中的最大值,如max$\left\{{3,\sqrt{10}}\right\}=\sqrt{10}$.已知函数f(x)=max{x2-1,2lnx},g(x)=max{x+lnx,ax2+x}.
(1)求函数f(x)在$[{\frac{1}{2},1}]$上的值域;
(2)试探讨是否存在实数a,使得g(x)<$\frac{3}{2}$x+4a对x∈(1,+∞)恒成立?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}x=2\sqrt{2}cosα\\ y=2sinα\end{array}\right.(α∈R,α$为参数),曲线C2的极坐标方程为$ρcosθ-\sqrt{2}ρsinθ-5=0$.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设P为曲线C1上一点,Q曲线C2上一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.国庆期间某商场新进某品牌电视机30台,为检测这批品牌电视机的安全系数,现采用系统抽样的方法从中抽取5台进行检测,若第一组抽出的号码是4,则第4组抽出的号码为22.

查看答案和解析>>

同步练习册答案