精英家教网 > 高中数学 > 题目详情
17.在△ABC中,角A,B,C的对边分别为a,b,c,若a=4,sinA=2sinB,则b=(  )
A.8B.4C.2D.1

分析 由已知利用正弦定理即可计算得解.

解答 解:∵a=4,sinA=2sinB,
∴由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,可得:b=$\frac{asinB}{sinA}$=$\frac{4sinB}{2sinB}$=2.
故选:C.

点评 本题主要考查了正弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,a1=2,an+1=an+ln(1+$\frac{1}{n}$),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出如下四个命题,其中正确的命题为(  )
A.若“p且q”为假命题,则p、q均为假命题
B.命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”
C.“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”
D.在△ABC中,“A>B”是“sinA>sinB”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x),g(x)定义在同一区间上,f(x)是增函数,g(x)是减函数,且g(x)≠0,则(  )
A.f(x)+g(x) 为减函数B.f(x)-g(x)为增函数C.f(x)•g(x)是减函数D.$\frac{f(x)}{g(x)}$ 是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F(-c,0),M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为$\sqrt{2}$cb,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图AB是圆O的直径,点C是弧AB上一点,VC垂直圆O所在平面,D,E分别为VA,VC的中点.
(1)求证:DE⊥VB;
(2)若VC=CA=6,圆O的半径为5,求点E到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式mx2+x+n>0的解集是{x|-$\frac{1}{3}$<x<$\frac{1}{2}$},则m,n分别是(  )
A.6,-1B.-6,-1C.6,1D.-6,1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知某几何体的三视图如图所示,则该几何体的外接球表面积为8π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=lnx-$\frac{1}{2}{x^2}$-x+5的单调递增区间为$({0,\frac{{-1+\sqrt{5}}}{2}})$.

查看答案和解析>>

同步练习册答案