精英家教网 > 高中数学 > 题目详情
12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F(-c,0),M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为$\sqrt{2}$cb,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

分析 设M(x0,y0),y0>0,由四边形OFMN为平行四边形,四边形OFMN的面积为$\sqrt{2}$cb,由x0=-$\frac{c}{2}$,丨y0丨=$\sqrt{2}$b,代入双曲线方程,由离心率公式,即可求得双曲线C的离心率.

解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)焦点在x轴上,
设M(x0,y0),y0>0,由四边形OFMN为平行四边形,
∴x0=-$\frac{c}{2}$,
四边形OFMN的面积为$\sqrt{2}$cb,
∴丨y0丨c=$\sqrt{2}$cb,即丨y0丨=$\sqrt{2}$b,
∴M(-$\frac{c}{2}$,$\sqrt{2}$b),
代入双曲线可得:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,整理得:$\frac{{c}^{2}}{4{a}^{2}}-2=1$,
由e=$\frac{c}{a}$,
∴e2=12,由e>1,解得:e=2$\sqrt{3}$,
故选D.

点评 本题考查双曲线的标准方程,考查双曲线的离心率公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知⊙O1:(x-1)2+y2=4,⊙O2:x2+(y-$\sqrt{3}$)2=9.
(1)求两圆公共弦所在的直线方程;
(2)求两圆的公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知全集U={2,3,x+3},U的子集A={5},若∁UA={2,y},则x•y=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:
[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否能在犯错误的概率不超过0.1的前提下认为“生产能手与工人所在的年龄组有关”?(X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+2}{n}_{+1}}$,X2>6.635时有99%的把握具有相关性)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在空间直角坐标系中,点A(-4,-1,-9)与点B(-10,1,-6)的距离是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,角A,B,C的对边分别为a,b,c,若a=4,sinA=2sinB,则b=(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知过点P(4,3)的光线,经x轴上一点A反射后的光线过点Q(0,5).则点A的坐标为($\frac{5}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.由曲线y=$\sqrt{x}$,直线y=2-x及y轴所围成的封闭图形的面积为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{10}{3}$B.$\frac{16}{3}$C.5D.10

查看答案和解析>>

同步练习册答案