精英家教网 > 高中数学 > 题目详情
20.已知某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:
[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否能在犯错误的概率不超过0.1的前提下认为“生产能手与工人所在的年龄组有关”?(X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+2}{n}_{+1}}$,X2>6.635时有99%的把握具有相关性)

分析 (1)由分层抽样的特点可得样本中有25周岁以上、下组工人人数,再由所对应的频率可得样本中日平均生产件数不足60件的工人中,25周岁以上、下组工人的人数分别为3,2,由古典概型的概率公式可得答案;
(2)由频率分布直方图可得“25周岁以上组”中的生产能手的人数,以及“25周岁以下组”中的生产能手的人数,据此可得2×2列联表,可得k2≈1.79,由1.79<2.706,可得结论.

解答 解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名,
所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3.25周岁以下组工人有40×0.05=2(人),记为B1,B2
从中随机抽取2名工人,所有可能的结果共有10种,即:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2) (B1,B2).其中,至少抽到一名“25周岁以下组”工人的可能结果共有7种,是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).
故所求概率P=0.7.
(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:

生产能手非生产能手总计
25周岁以上组154560
25周岁以下组152540
总计3070100
所以得:X2=$\frac{100×(15×25-15×45)^{2}}{60×40×30×70}$≈1.79.
所以不能在犯错误的概率不超过0.1的前提下认为“生产能手与工人所在的年龄组有关”.

点评 本题考查独立性检验,涉及频率分布直方图,以及古典概型的概率公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{1-{3}^{x}}$的定义域是(  )
A.[0,+∞)B.(-∞,0]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如表是某商店每月某种商品的销售额(用y表示,单位:万元)与月份(t)的关系对照表.
月份(t)12345
销售额(y)y1y2y3y4y5
其中$\overline{y}$=10,$\sum_{i=1}^{5}$tiyi=163.请建立y关于t的回归方程(系数精确到0.01)并预测6月份这种商品的销售额.
参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t+$\stackrel{∧}{a}$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t}({y}_{i}-\overline{y}))}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出如下四个命题,其中正确的命题为(  )
A.若“p且q”为假命题,则p、q均为假命题
B.命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”
C.“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”
D.在△ABC中,“A>B”是“sinA>sinB”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2},
(1)求A∩B,A∪B.
(2)若集合C={x|2x+a>0},满足C∪B=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x),g(x)定义在同一区间上,f(x)是增函数,g(x)是减函数,且g(x)≠0,则(  )
A.f(x)+g(x) 为减函数B.f(x)-g(x)为增函数C.f(x)•g(x)是减函数D.$\frac{f(x)}{g(x)}$ 是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F(-c,0),M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为$\sqrt{2}$cb,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式mx2+x+n>0的解集是{x|-$\frac{1}{3}$<x<$\frac{1}{2}$},则m,n分别是(  )
A.6,-1B.-6,-1C.6,1D.-6,1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{\sqrt{x}}{{x}^{2}-1}$的定义域是(  )
A.{x|x≥0或x≠1}B.{x|x≥0或 x≠±1}C.{x|x≥且x≠1}D.{x|x≥0且x≠1}

查看答案和解析>>

同步练习册答案