分析 (1)由分层抽样的特点可得样本中有25周岁以上、下组工人人数,再由所对应的频率可得样本中日平均生产件数不足60件的工人中,25周岁以上、下组工人的人数分别为3,2,由古典概型的概率公式可得答案;
(2)由频率分布直方图可得“25周岁以上组”中的生产能手的人数,以及“25周岁以下组”中的生产能手的人数,据此可得2×2列联表,可得k2≈1.79,由1.79<2.706,可得结论.
解答 解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名,
所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3.25周岁以下组工人有40×0.05=2(人),记为B1,B2.
从中随机抽取2名工人,所有可能的结果共有10种,即:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2) (B1,B2).其中,至少抽到一名“25周岁以下组”工人的可能结果共有7种,是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).
故所求概率P=0.7.
(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:
| 生产能手 | 非生产能手 | 总计 | |
| 25周岁以上组 | 15 | 45 | 60 |
| 25周岁以下组 | 15 | 25 | 40 |
| 总计 | 30 | 70 | 100 |
点评 本题考查独立性检验,涉及频率分布直方图,以及古典概型的概率公式,属中档题.
科目:高中数学 来源: 题型:解答题
| 月份(t) | 1 | 2 | 3 | 4 | 5 |
| 销售额(y) | y1 | y2 | y3 | y4 | y5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若“p且q”为假命题,则p、q均为假命题 | |
| B. | 命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1” | |
| C. | “?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1” | |
| D. | 在△ABC中,“A>B”是“sinA>sinB”的充分不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)+g(x) 为减函数 | B. | f(x)-g(x)为增函数 | C. | f(x)•g(x)是减函数 | D. | $\frac{f(x)}{g(x)}$ 是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6,-1 | B. | -6,-1 | C. | 6,1 | D. | -6,1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥0或x≠1} | B. | {x|x≥0或 x≠±1} | C. | {x|x≥且x≠1} | D. | {x|x≥0且x≠1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com