精英家教网 > 高中数学 > 题目详情
2.已知⊙O1:(x-1)2+y2=4,⊙O2:x2+(y-$\sqrt{3}$)2=9.
(1)求两圆公共弦所在的直线方程;
(2)求两圆的公共弦长.

分析 (1)两圆的一般式方程相减,再化简整理得两圆公共弦所在直线的方程;
(2)求出第一个圆的圆心到直线2x-2$\sqrt{3}$y-3=0的距离,再结合垂直于直径的弦的性质,即可得到两圆的公共弦长.

解答 解:(1)将两圆的方程相减,化简得:2x-2$\sqrt{3}$y-3=0,
∴公共弦所在直线的方程是2x-2$\sqrt{3}$y-3=0;
(2)圆O1的圆心(1,0)到直线2x-2$\sqrt{3}$y-3=0的距离d=$\frac{1}{\sqrt{4+12}}$=$\frac{1}{4}$,
由此可得,公共弦的长l=2$\sqrt{4-\frac{1}{4}}$=$\sqrt{15}$.

点评 本题给出两个定圆,求它们的公共弦所在直线方程并求弦长,着重考查了圆的标准方程与一般方程、圆与圆的位置关系和直线与圆的位置关系等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则该几何体的体积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an},{cn}满足条件:${a_1}=1,{a_{n+1}}=2{a_n}+1,{c_n}=\frac{1}{(2n+1)(2n+3)}$.
(1)求证数列{an+1}是等比数列,并求数列{an}的通项公式;
(2)求数列{cn}的前n项和Tn,并求使得${a_m}>\frac{1}{T_n}$对任意n∈N+都成立的正整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{1-{3}^{x}}$的定义域是(  )
A.[0,+∞)B.(-∞,0]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合U={1,3,5,7,9},A={3,7,9},B={1,9},则A∩(∁UB)={3,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在数列{an}中,a1=2,an+1=an+ln(1+$\frac{1}{n}$),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知x,y∈R,命题p:若x>|y|,则x>y;命题q:若x+y>0,则x2>y2,在命题(1)p∨q;(2)(¬p)∧(¬q);(3)p∧(¬q);(4)p∧q中,证明题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如表是某商店每月某种商品的销售额(用y表示,单位:万元)与月份(t)的关系对照表.
月份(t)12345
销售额(y)y1y2y3y4y5
其中$\overline{y}$=10,$\sum_{i=1}^{5}$tiyi=163.请建立y关于t的回归方程(系数精确到0.01)并预测6月份这种商品的销售额.
参考公式:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t+$\stackrel{∧}{a}$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t}({y}_{i}-\overline{y}))}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点为F(-c,0),M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为$\sqrt{2}$cb,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案