15£®¸÷ÏîΪÕýµÄÊýÁÐ{an}Âú×ã${a_1}=\frac{1}{2}$£¬${a_{n+1}}=\frac{a_n^2}{¦Ë}+{a_n}£¬£¨n¡Ê{N^*}£©$£¬
£¨1£©È¡¦Ë=an+1£¬ÇóÖ¤£ºÊýÁÐ$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$ÊǵȱÈÊýÁУ¬²¢ÇóÆä¹«±È£»
£¨2£©È¡¦Ë=2ʱÁî${b_n}=\frac{1}{{{a_n}+2}}$£¬¼ÇÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÊýÁÐ{bn}µÄǰnÏîÖ®»ýΪTn£¬ÇóÖ¤£º¶ÔÈÎÒâÕýÕûÊýn£¬2n+1Tn+SnΪ¶¨Öµ£®

·ÖÎö £¨1£©°ÑÓɦË=an+1´úÈë${a_{n+1}}=\frac{a_n^2}{¦Ë}+{a_n}£¬£¨n¡Ê{N^*}£©$£¬ÕûÀíºóÇó½â·½³ÌÇóµÃ$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1¡À\sqrt{5}}{2}$£®½áºÏan£¾0¿ÉµÃ$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1+\sqrt{5}}{2}$Ϊ³£Êý£¬½áÂÛµÃÖ¤£»
£¨2£©°Ñ¦Ë=2´úÈëÊýÁеÝÍÆÊ½£¬µÃµ½2an+1=an£¨an+2£©£¬±äÐεõ½${b}_{n}=\frac{1}{2}\frac{{a}_{n}}{{a}_{n+1}}$£¬È»ºó·Ö±ðÀûÓÃÀÛ»ý·¨ºÍÁÑÏîÏàÏû·¨ÇóµÃTn£¬Sn£¬´úÈë2n+1Tn+SnÖ¤µÃ´ð°¸£®

½â´ð Ö¤Ã÷£º£¨1£©ÓɦË=an+1£¬µÃ${a}_{n+1}=\frac{{{a}_{n}}^{2}}{{a}_{n+1}}+{a}_{n}$£¬¡à${{a}_{n+1}}^{2}-{a}_{n+1}{a}_{n}-{{a}_{n}}^{2}=0$£®
Á½±ßͬ³ý$a_n^2$¿ÉµÃ£º$£¨\frac{{{a_{n+1}}}}{a_n}{£©^2}-\frac{{{a_{n+1}}}}{a_n}-1=0$£¬½âµÃ$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1¡À\sqrt{5}}{2}$£®
¡ßan£¾0£¬¡à$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1+\sqrt{5}}{2}$Ϊ³£Êý£¬
¹ÊÊýÁÐ$\{\frac{{{a_{n+1}}}}{a_n}\}$ÊǵȱÈÊýÁУ¬¹«±ÈΪ1£»
£¨2£©µ±¦Ë=2ʱ£¬${a}_{n+1}=\frac{{{a}_{n}}^{2}}{2}+{a}_{n}$£¬µÃ2an+1=an£¨an+2£©£¬
¡à${b}_{n}=\frac{1}{{a}_{n}+2}=\frac{1}{2}\frac{{a}_{n}}{{a}_{n+1}}$£®
¡à${T_n}={b_1}•{b_2}¡­{b_n}=£¨\frac{1}{2}\frac{a_1}{a_2}£©£¨\frac{1}{2}\frac{a_2}{a_3}£©¡­£¨\frac{1}{2}\frac{a_n}{{{a_{n+1}}}}£©={£¨\frac{1}{2}£©^n}£¨\frac{a_1}{{{a_{n+1}}}}£©={£¨\frac{1}{2}£©^{n+1}}£¨\frac{1}{{{a_{n+1}}}}£©$£¬
ÓÖ${b_n}=\frac{1}{2}\frac{a_n}{{{a_{n+1}}}}=\frac{a_n^2}{{2{a_n}{a_{n+1}}}}=\frac{{2{a_{n+1}}-2{a_n}}}{{2{a_n}{a_{n+1}}}}=\frac{1}{a_n}-\frac{1}{{{a_{n+1}}}}$£¬
¡à${S}_{n}={b}_{1}+{b}_{2}+¡­+{b}_{n}=\frac{1}{{a}_{1}}-\frac{1}{{a}_{n+1}}=2-\frac{1}{{a}_{n+1}}$£¬
¹Ê2n+1Tn+Sn=${2}^{n+1}•£¨\frac{1}{2}£©^{n+1}£¨\frac{1}{{a}_{n+1}}£©+2-\frac{1}{{a}_{n+1}}$=2Ϊ¶¨Öµ£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȱȹØÏµµÄÈ·¶¨£¬ÑµÁ·ÁËÀÛ»ý·¨ÇóÊýÁеÄͨÏʽ¼°ÁÑÏîÏàÏû·¨ÇóÊýÁеĺͣ¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªa£¬b£¬c·Ö±ðÊÇ¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß£¬ÇÒC=$\frac{¦Ð}{3}$£®
£¨¢ñ£©Èôc=2£¬¡÷ABCµÄÃæ»ýS=$\sqrt{3}$£¬Çóa£¬b£®
£¨¢ò£©Èôcos£¨B-A£©+cosC+2cos2A=2£¬ÇóA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\frac{lnx+a}{x}$£¨a¡ÊR£©£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äÓ뼫ֵ£»
£¨2£©Èôº¯Êýf£¨x£©µÄͼÏóÓ뺯Êýg£¨x£©=1µÄͼÏóÔÚÇø¼ä£¨0£¬e2]ÉÏÓÐÁ½¸ö¹«¹²µã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©µ±-2£¼a£¼-1ʱ£¬Èôº¯Êýf£¨x£©ÔÚÇø¼ä£¨m£¬e2£©£¨ÆäÖÐm£¾0£©ÉϺãÓÐÒ»¸öÁãµã£¬ÇóʵÊýmµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªµãA£¨$\frac{3}{2}$£¬-1£©ÔÚÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©µÄ×¼Ïßl1ÉÏ£¬¹ýµãA×÷Ò»ÌõбÂÊΪ2µÄÖ±Ïßl2£¬µãPÊÇÅ×ÎïÏß
Éϵ͝µã£¬ÔòµãPµ½Ö±Ïßl1ºÍµ½Ö±Ïßl2µÄ¾àÀëÖ®ºÍµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{2}$B£®$\sqrt{5}$C£®2D£®$2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®É躯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A¡Ù0£¬¦Ø£¾0£¬-$\frac{¦Ð}{2}£¼¦Õ£¼\frac{¦Ð}{2}£©$µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{2¦Ð}{3}$¶Ô³Æ£¬ËüµÄ×îСÕýÖÜÆÚΪ¦Ð£¬Ôò£¨¡¡¡¡£©
A£®f£¨x£©µÄͼÏó¹ýµã$£¨0£¬\frac{1}{2}£©$B£®f£¨x£©ÔÚ$[{\frac{¦Ð}{12}£¬\frac{2¦Ð}{3}}]$ÉÏÊǼõº¯Êý
C£®f£¨x£©µÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ$£¨{\frac{5¦Ð}{12}£¬0}£©$D£®f£¨x£©µÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ$£¨{\frac{¦Ð}{6}£¬0}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=ex+mx-2£¬g£¨x£©=mx+lnx£®
£¨I£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨II£©µ±m=-1ʱ£¬ÊÔÍÆ¶Ï·½³Ì£º$|{g£¨x£©}|=\frac{lnx}{x}+\frac{1}{2}$ÊÇ·ñÓÐʵÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®±ß³¤Îª4µÄÕý·½ÐÎABCDµÄÖÐÐÄΪO£¬ÒÔOΪԲÐÄ£¬1Ϊ°ë¾¶×÷Ô²£¬µãMÊÇÔ²OÉϵÄÈÎÒâÒ»µã£¬µãNÊDZßAB¡¢BC¡¢CDÉϵÄÈÎÒâÒ»µã£¨º¬¶Ëµã£©£¬Ôò$\overrightarrow{MN}•\overrightarrow{DA}$µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[-18£¬18]B£®[-16£¬16]C£®[-12£¬12]D£®[-8£¬8]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬ÈýÌõƽÐÐÖ±Ïßl1£¬l£¬l2°ÑÆ½Ãæ·Ö³É¢Ù¡¢¢Ú¡¢¢Û¡¢¢ÜËĸöÇøÓò£¨²»º¬±ß½ç£©£¬ÇÒÖ±Ïßlµ½l1£¬l2µÄ¾àÀëÏàµÈ£®µãOÔÚÖ±ÏßlÉÏ£¬µãA£¬BÔÚÖ±Ïßl1ÉÏ£¬PÎªÆ½ÃæÇøÓòÄڵĵ㣬ÇÒÂú×ã$\overrightarrow{OP}$=¦Ë1$\overrightarrow{OA}$+¦Ë2$\overrightarrow{OB}$£¨¦Ë1£¬¦Ë2¡Êr£©£®ÈôPËùÔÚµÄÇøÓòΪ¢Ü£¬Ôò¦Ë1+¦Ë2µÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÕýÊým¡¢nÂú×ãm2=a2+b2£¬n2=x2+y2£¬Çóax+byµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸