精英家教网 > 高中数学 > 题目详情
5.设a为实数,函数f(x)=x3-x2-x+a,若函数f(x)过点A(1,0),求函数在区间[-1,3]上的最值.

分析 由题意可得f(1)=1-1-1+a=0,从而化简f(x)=x3-x2-x+1,f′(x)=3x2-2x-1=(3x+1)(x-1),从而判断函数的单调性再求最值即可.

解答 解:∵函数f(x)过点A(1,0),
∴f(1)=1-1-1+a=0,
∴a=1,
∴f(x)=x3-x2-x+1,f′(x)=3x2-2x-1=(3x+1)(x-1),
∴f(x)在[-1,-$\frac{1}{3}$]上是增函数,在[-$\frac{1}{3}$,1]上是减函数,
在[1,3]上是增函数;
而f(-1)=-1-1+1+1=0,
f(-$\frac{1}{3}$)=-$\frac{1}{27}$-$\frac{1}{9}$+$\frac{1}{3}$+1=1+$\frac{5}{27}$=$\frac{32}{27}$,
f(1)=0,
f(3)=27-9-3+1=16,
故函数f(x)的最大值为16,最小值为0.

点评 本题考查了函数的性质的判断与应用,同时考查了导数的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.不等式y≥2x-3表示的平面区域是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a∈N*)的两个焦点为F1,F2,P为该双曲线上一点,满足|F1F2|2=|PF1|•|PF2|,P到坐标原点O的距离为d,且5<d<7,则a2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,扇形AOB中,OA=1,∠AOB=90°,M是OB中点,P是弧AB上的动点,N是线段OA上的动点,则$\overrightarrow{PM}$$•\overrightarrow{PN}$的最小值为(  )
A.0B.1C.$\frac{3}{2}$D.1-$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.两两相交的三条直线共面
B.两条异面直线在同一平面上的射影可以是一条直线
C.一条直线上有两点到平面的距离相等,则这条直线和该平面平行
D.不共面的四点中,任何三点不共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式(x2-x-2)(1+x2)≤0的解集为[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,则“|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|”是“$\overrightarrow{a}$∥$\overrightarrow{b}$”成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分条件又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.方程C${\;}_{16}^{{x}^{2}-x}$=C${\;}_{16}^{5x-5}$的解集是(  )
A.{1,3,5,7}B.{1,3,5}C.{3,5}D.{1,3}

查看答案和解析>>

科目:高中数学 来源:2017届江苏南京市高三上学期学情调研数学试卷(解析版) 题型:解答题

已知数列是公差为正数的等差数列,其前项和为,且.

(1)求数列的通项公式;

(2)数列满足.

①求数列的通项公式;

②是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案