分析 求得双曲线的b,c,设P为右支上一点,|PF1|=m,|PF2|=n,运用双曲线的定义,结合条件,由两点的距离公式,解不等式可得a的正整数解.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1的b=2,c2=a2+4,
设P为右支上一点,|PF1|=m,|PF2|=n,
由双曲线的定义可得m-n=2a,
由题意可得4c2=mn,
m2+n2=2c2+2d2,
可得(m-n)2+2mn=4a2+8c2=2c2+2d2
又d2∈(25,49),
即25<5a2+12<49,
由a为正整数,可得a=2,
故答案为:4.
点评 本题考查双曲线的定义、方程和性质,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c>b>a | B. | b>c>a | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ω=2,φ=-$\frac{π}{6}$ | B. | ω=2,φ=-$\frac{π}{3}$ | C. | ω=$\frac{1}{2}$,φ=-$\frac{π}{6}$ | D. | ω=$\frac{1}{2}$,φ=-$\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com