精英家教网 > 高中数学 > 题目详情
1.在区间[0,3]上任意取一个数m,则函数f(x)=$\frac{1}{3}$x3-x2+mx是R上的单调函数的概率是$\frac{2}{3}$.

分析 由题意,本题属于几何概型的概率求法,由此只要求出所有事件的区域长度以及满足条件的m的范围对应的区域长度,利用几何概型概率公式可求.

解答 解:∵f(x)=$\frac{1}{3}$x3-x2+mx,
∴f′(x)=x2-2x+m,∴导函数为抛物线,开口向上,
∵要使f(x)在R上单调,
∴f'(x)=x2-2x+m≥0在R上恒成立,即m≥-x2+2x在R上恒成立,
∴m大于等于-x2+2x的最大值即可,
∵-x2+2x=-(x-1)2+1≤1,
∴m≥1,
∵m≤3,∴1≤m≤3,长度为2,
∵区间[0,3]上任意取一个数m,长度为3,
∴函数f(x)=$\frac{1}{3}$x3-x2+mx是R上的单调函数的概率是$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题主要考查几何概型,考查利用导数研究函数的单调性,正确把握导数的正负与函数单调性之间的关系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1右焦点F作一条直线,当直线斜率为2时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同交点,则双曲线离心率的取值范围是(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{2}$+1)C.($\sqrt{2}$+1,$\sqrt{10}$)D.($\sqrt{5}$,$\sqrt{10}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线的参数方程为$\left\{\begin{array}{l}{x=4{t}^{2}+3}\\{y={t}^{2}-1}\end{array}\right.$(t为参数),则曲线是(  )
A.线段B.双曲线的一支C.D.射线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设$\overrightarrow{i}$,$\overrightarrow{j}$是平面直角坐标系中x轴和y轴正方向上的单位向量,$\overrightarrow{AB}$=4$\overrightarrow{i}$-2$\overrightarrow{j}$,$\overrightarrow{AC}$=7$\overrightarrow{i}$+4$\overrightarrow{j}$,$\overrightarrow{AD}$=3$\overrightarrow{i}$+6$\overrightarrow{j}$,求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(1)钟表经过10分钟,时针转了5度;
(2)若将钟表拨慢10分钟,则分针转了-60度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.化简:$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某商场对新进300袋奶粉采用系统抽样的方法,从中抽取20袋进行检查,先将所有奶粉从1~300编号,按编号顺序平均分成15组(1~20号,21~40号,…,281~300号),若第1组抽出的号码是6,则第3组抽出的号码为36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{p}$=(cosα-5,-sinα),$\overrightarrow{q}$=(sinα-5,cosα),$\overrightarrow{p}$∥$\overrightarrow{q}$,且α∈(0,π),求tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=3x2-1,则f(a)-f(-a)的值是(  )
A.0B.3a2-1C.6a2-2D.6a2

查看答案和解析>>

同步练习册答案