【题目】某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求实验室这一天的最大温差;
(Ⅱ)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?
【答案】解:(Ⅰ)∵f(t)=10﹣ =10﹣2sin( t+ ),t∈[0,24), ∴ ≤ t+ < ,故当 t+ = 时,及t=14时,函数取得最大值为10+2=12,
当 t+ = 时,即t=2时,函数取得最小值为10﹣2=8,
故实验室这一天的最大温差为12﹣8=4℃.
(Ⅱ)由题意可得,当f(t)>11时,需要降温,由(Ⅰ)可得f(t)=10﹣2sin( t+ ),
由10﹣2sin( t+ )>11,求得sin( t+ )<﹣ ,即 < t+ < ,
解得10<t<18,即在10时到18时,需要降温.
【解析】(Ⅰ)利用两角和差的正弦公式化简函数解析式为f(t)10﹣2sin( t+ ),t∈[0,24),利用正弦函数的定义域和值域求得f(x)的最大值及最小值,可得实验室这一天的最大温差.(Ⅱ)由题意可得,当f(t)>11时,需要降温,由f(t)>11,求得sin( t+ )<﹣ ,即 < t+ < ,解得t的范围,可得结论.
科目:高中数学 来源: 题型:
【题目】已知下列三个命题:
①若一个球的半径缩小到原来的 ,则其体积缩小到原来的 ;
②若两组数据的平均数相等,则它们的标准差也相等;
③直线x+y+1=0与圆x2+y2= 相切.
其中真命题的序号是( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”
| 0.05 | 0.01 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为,求的分布列和数学期望;
(II)根据频率分布直方图填写下面2 x2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知常数,在矩形ABCD中, , ,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设过原点 O 的直线与圆 C : 的一个交点为 P ,点 M 为线段 OP 的中点。
(1)求圆 C 的极坐标方程;
(2)求点 M 轨迹的极坐标方程,并说明它是什么曲线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x+a=0上存在两点关于直线l:mx+y+1=0对称. (Ⅰ)求m的值;
(Ⅱ)直线l与圆C交于A,B两点, =﹣3(O为坐标原点),求圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下 列联表:
接受挑战 | 不接受挑战 | 合计 | |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
合计 | 75 | 25 | 100 |
根据表中数据,是否有99%的把握认为“冰桶挑战赛与受邀者的性别有关”?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com