精英家教网 > 高中数学 > 题目详情
7.设x,y满足约束条件$\left\{{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}}\right.$.
(1)求x+2y最大值;
(2)若目标函数z=ax+by(a>0,b>0)的最大值为4,求$\frac{1}{a}$+$\frac{2}{3b}$的最小值;
(3)若目标函数z=kx+y最小值的最优解有无数个,求值k.

分析 画出约束条件的可行域,(1)利用x+2y的几何意义,求出最大值即可;
(2)利用目标函数z=ax+by(a>0,b>0)的最大值为4,得到ab的关系式,利用基本不等式求解最值即可.
(3)利用目标函数z=kx+y最小值的最优解有无数个,通过几何意义,利用数形结合求解即可.

解答 解:x,y满足约束条件$\left\{{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}}\right.$的可行域为:
(1)令z=x+2y,当直线经过,可行域的C点时,
x+2y取得最大值,由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,
解得C(4,6),
可得x+2y取最大值16;
(2)目标函数z=ax+by(a>0,b>0)的最大值为4,可知,z=ax+by经过C时,取得最大值,可得$4a+6b=4⇒a+\frac{3}{2}b=1$
$\frac{1}{a}$+$\frac{2}{3b}$=$(\frac{1}{a}+\frac{2}{3b})(a+\frac{3}{2}b)=2+\frac{3b}{2a}+\frac{2a}{3b}≥4$;
当且仅当2a=3b=1时取得最小值4.
(3)由z=kx+y得y=-kx+z,
若k=0,则y=z,此时目标函数取得最小值的解只有无数个,满足条件.
若k>0,若目标函数z=kx+y的取得最小值的最优解有无数个,不满足题意,
若k<0,若目标函数z=kx+y的取得最小值的最优解有无数个,
则目标函数对应的直线与AC:3x+y-6=0平行,
此时k=-3,
综上k=0或-3.
故答案为:k=0或-3

点评 本题主要考查线性规划的应用,利用数形结合以及目标函数的几何意义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知m∈R,函数f(x)=$\left\{\begin{array}{l}{|2x+1|,x<1}\\{lo{g}_{2}(x-1),x>1}\end{array}$,g(x)=x2-2x+2m-1,下列叙述中正确的有②
①函数y=f(f(x))有4个零点;
②若函数y=g(x)在(0,3)内有零点,则-1<m≤1;
③函数y=f(x)+g(x)有两个零点的充要条件是m≤-$\frac{1}{2}$或m≥-$\frac{1}{8}$;
④若函数y=f(g(x))-m有6个零点则实数m的取值范围是(0,$\frac{3}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{-x,x<0}\\{\sqrt{x},x≥0}\end{array}\right.$,若关于x的方程f(x)=a(x+1)有三个不相等的实数根,则实数a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数分别由如表给出
x123
f(x)131
x123
g(x)321
则f(g(1))的值为1;满足g(f(x))=1的x值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线C:mx2+ny2=1,(m>0,n<0)的一条渐近线与圆x2+y2-6x-2y+9=0相切,则双曲线C的离心率等于(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点A(2,3),B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x-2y+2=0上.
(1)求点C的坐标及S△ABC
(2)若直线l'过点C且与x轴、y轴正半轴分别交于P、Q两点,则:
①求S△POQ的最小值及此时l'的方程;
②求|PC|•|QC|的最小值及此时l'的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=asin($\frac{π}{4}$x)(a>0)在同一半周期内的图象过点O,P,Q,其中O为坐标原点,P为函数f(x)的最高点,Q为函数f(x)的图象与x轴的正半轴的交点,△OPQ为等腰直角三角形.
(Ⅰ)求a的值;
(Ⅱ)将△OPQ绕原点O按逆时针方向旋转角α(0<α<$\frac{π}{4}$),得到△OP′Q′,若点P′恰好落在曲线y=$\frac{3}{x}$(x>0)上(如图所示),试判断点Q′是否也落在曲线y=$\frac{3}{x}$(x>0),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x-1)=x2-2x,则f(x)的表达式是(  )
A.f(x)=x2-1B.f(x)=x2-xC.f(x)=x2+xD.f(x)=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.(-8)${\;}^{\frac{1}{3}}}$•$\frac{{{{(\sqrt{a{b^{-1}}})}^3}}}{{{{(0.2)}^{-2}}{{({a^3}{b^{-3}})}^{\frac{1}{2}}}}}$=$-\frac{2}{25}$.

查看答案和解析>>

同步练习册答案